3-6-maple.mw

with(plots); -1 

 

#1 - Polynomial 

#2 - Rational Function with an Oblique Asymptote 

#3 - Another Rational Function (Less Going on.) 

#4 - ANOTHER Rational Function.  More Algebra-type skills. 

#5 - Yes.   Another Rational Function. 

f := proc (x) options operator, arrow; `/`(`*`(`^`(`+`(`*`(2, `*`(x)), 3), 2), `*`(`^`(`+`(x, `-`(2)), 5))), `*`(`^`(x, 3), `*`(`^`(`+`(x, `-`(5)), 2)))) end proc 

proc (x) options operator, arrow; `/`(`*`(`^`(`+`(`*`(2, `*`(x)), 3), 2), `*`(`^`(`+`(x, `-`(2)), 5))), `*`(`^`(x, 3), `*`(`^`(`+`(x, `-`(5)), 2)))) end proc (5.1)
 

fp := D(f); -1 

 

`+`(`/`(`*`(2, `*`(`+`(`*`(2, `*`(x)), 3), `*`(`^`(`+`(x, `-`(2)), 4), `*`(`+`(`*`(2, `*`(`^`(x, 3))), `-`(`*`(14, `*`(`^`(x, 2)))), `-`(`*`(10, `*`(x))), `-`(45)))))), `*`(`^`(x, 4), `*`(`^`(`+`(x, `... (5.2)
 

 

-1.500000000, 2., 2., 2., 2., 7.979908612, `+`(`-`(.489954306), `*`(1.606090266, `*`(I))), `+`(`-`(.489954306), `-`(`*`(1.606090266, `*`(I)))) (5.3)
 

 

609.1740340 (5.4)
 

fpp := D(fp); -1 

 

`+`(`/`(`*`(2, `*`(`^`(`+`(x, `-`(2)), 3), `*`(`+`(`*`(4, `*`(`^`(x, 6))), `-`(`*`(56, `*`(`^`(x, 5)))), `*`(216, `*`(`^`(x, 4))), `*`(460, `*`(`^`(x, 3))), `*`(805, `*`(`^`(x, 2))), `*`(1710, `*`(x))... (5.5)
 

 

2., 2., 2., `+`(8.017060297, `*`(4.300575865, `*`(I))), `+`(.6387171820, `*`(1.911706601, `*`(I))), `+`(`-`(1.655777479), `*`(1.128379193, `*`(I))), `+`(`-`(1.655777479), `-`(`*`(1.128379193, `*`(I)))...
2., 2., 2., `+`(8.017060297, `*`(4.300575865, `*`(I))), `+`(.6387171820, `*`(1.911706601, `*`(I))), `+`(`-`(1.655777479), `*`(1.128379193, `*`(I))), `+`(`-`(1.655777479), `-`(`*`(1.128379193, `*`(I)))...
(5.6)
 

 

Plot_2d
 

`+`(`*`(4, `*`(`^`(x, 2))), `*`(12, `*`(x)), 69) (5.7)
 

quo(numer(f(x)), denom(f(x)), x) 

`+`(`*`(4, `*`(`^`(x, 2))), `*`(12, `*`(x)), 69) (5.8)
 

The above is the oblique asymptote.  The following is the remainder upon division. 

rem(numer(f(x)), denom(f(x)), x) 

`+`(`*`(460, `*`(`^`(x, 4))), `-`(`*`(2005, `*`(`^`(x, 3)))), `*`(112, `*`(`^`(x, 2))), `*`(336, `*`(x)), `-`(288)) (5.9)
 

#6 - A rational function with domain all real numbers. 

f := proc (x) options operator, arrow; `/`(`*`(`+`(`*`(`^`(x, 3)), `*`(5, `*`(`^`(x, 2))), 1)), `*`(`+`(`*`(`^`(x, 4)), `*`(`^`(x, 3)), `-`(`*`(`^`(x, 2))), 2))) end proc 

proc (x) options operator, arrow; `/`(`*`(`+`(`*`(`^`(x, 3)), `*`(5, `*`(`^`(x, 2))), 1)), `*`(`+`(`*`(`^`(x, 4)), `*`(`^`(x, 3)), `-`(`*`(`^`(x, 2))), 2))) end proc (6.1)
 

proc (x) options operator, arrow; `/`(`*`(`+`(`*`(`^`(x, 3)), `*`(5, `*`(`^`(x, 2))), 1)), `*`(`+`(`*`(`^`(x, 4)), `*`(`^`(x, 3)), `-`(`*`(`^`(x, 2))), 2))) end proc (6.2)
 

p := proc (x) options operator, arrow; numer(f(x)) end proc 

 

proc (x) options operator, arrow; numer(f(x)) end proc (6.3)
 

 

`+`(`*`(`^`(x, 3)), `*`(5, `*`(`^`(x, 2))), 1) (6.4)
 

q := proc (x) options operator, arrow; denom(f(x)) end proc 

proc (x) options operator, arrow; denom(f(x)) end proc (6.5)
 

evalf(solve(f(x) = 0)) 

-5.039377329, `+`(0.19688664e-1, `-`(`*`(.4450276076, `*`(I)))), `+`(0.19688664e-1, `*`(.4450276076, `*`(I))) (6.6)
 

evalf(solve(q(x) = 0)) 

`+`(.7706965750, `*`(.7123224205, `*`(I))), `+`(`-`(1.270696575), `*`(.4485975544, `*`(I))), `+`(`-`(1.270696575), `-`(`*`(.4485975544, `*`(I)))), `+`(.7706965750, `-`(`*`(.7123224205, `*`(I)))) (6.7)
 

So no real roots in the denominator. 

#7 - A function with some rational-function features. 

p := proc (x) options operator, arrow; `*`(`^`(x, `/`(2, 3))) end proc 

proc (x) options operator, arrow; `*`(`^`(x, `/`(2, 3))) end proc (7.1)
 

q := proc (x) options operator, arrow; `+`(`*`(`^`(x, 4)), x, 6) end proc 

proc (x) options operator, arrow; `+`(`*`(`^`(x, 4)), x, 6) end proc (7.2)
 

f := proc (x) options operator, arrow; `/`(`*`(p(x)), `*`(q(x))) end proc 

proc (x) options operator, arrow; `/`(`*`(p(x)), `*`(q(x))) end proc (7.3)
 

 

`/`(`*`(`^`(x, `/`(2, 3))), `*`(`+`(`*`(`^`(x, 4)), x, 6))) (7.4)
 

 

 

`+`(1.109017742, `*`(1.206376832, `*`(I))), `+`(`-`(1.109017742), `*`(1.002245302, `*`(I))), `+`(`-`(1.109017742), `-`(`*`(1.002245302, `*`(I)))), `+`(1.109017742, `-`(`*`(1.206376832, `*`(I)))) (7.5)
 

fp := D(f); -1 

 

`/`(`*`(`+`(`*`(`^`(x, 3)), `*`(5, `*`(`^`(x, 2))), 1)), `*`(`+`(`*`(`^`(x, 4)), `*`(`^`(x, 3)), `-`(`*`(`^`(x, 2))), 2))) (7.6)
 

 

 

0., 1.054646897, `+`(`-`(.1760997067), `*`(1.296987697, `*`(I))), -1.294201384, -9.408246099, `+`(`-`(.1760997067), `-`(`*`(1.296987697, `*`(I)))) (7.7)
 

 

[`/`(1, 2), 2.345233856, -0.5627774100e-1] (7.8)
 

 

 

fpp := D(fp); -1 

 

`+`(`/`(`*`(2, `*`(`+`(`*`(`^`(x, 9)), `*`(15, `*`(`^`(x, 8))), `*`(18, `*`(`^`(x, 7))), `*`(21, `*`(`^`(x, 6))), `-`(`*`(9, `*`(`^`(x, 5)))), `-`(`*`(135, `*`(`^`(x, 4)))), `-`(`*`(76, `*`(`^`(x, 3))... (7.9)
 

 

.6018981518, 1.480577630, `+`(`-`(.2241830772), `*`(1.895136155, `*`(I))), `+`(`-`(.1227549252), `*`(.5401897616, `*`(I))), -1.032097636, -1.550227639, -13.80627450, `+`(`-`(.1227549252), `-`(`*`(.540...
.6018981518, 1.480577630, `+`(`-`(.2241830772), `*`(1.895136155, `*`(I))), `+`(`-`(.1227549252), `*`(.5401897616, `*`(I))), -1.032097636, -1.550227639, -13.80627450, `+`(`-`(.1227549252), `-`(`*`(.540...
(7.10)
 

 

[1.524624302, 1.934912424, 5.388010985, 5.641979405, -0.5005776786e-1] (7.11)
 

 

 

 

 

 

Plot_2d
 

with(plots); -1 

 

 

 

 

 

#8 - A radical function with a sine inside. 

#9 - Explore a family of cubic polynomials