

(9)

Solve

$$y_1'' + y_2'' = e^{2t}$$

$$y_1' + y_2' = -e^{2t}$$

$$s^2 y_1 + s^2 \mathcal{L}(y_2) = \frac{1}{s-2}$$

$$s^2 y_1 + s^2 \mathcal{L}(y_2) = -\frac{1}{s-2}$$

$$\begin{bmatrix} s^2 & s^2 \\ s & s^2 \end{bmatrix} \sim \begin{bmatrix} s & s^2 \\ s^2 & s^2 \end{bmatrix} \begin{bmatrix} -\frac{1}{s-2} \\ \frac{1}{s-2} \end{bmatrix} - sR_1 + R_2$$

$$\sim \begin{bmatrix} s & s^2 \\ 0 & s^2-s^3 \end{bmatrix} \begin{bmatrix} -\frac{1}{s-2} \\ \frac{1}{s-2} + \frac{s}{s-2} \end{bmatrix} (s^2-s^3) \mathcal{L}(y_2) = \frac{1}{s-2} + \frac{s}{s-2}$$

$$*_1 \quad y_1 = \frac{1}{s^2(1-s)} \left[\frac{1}{s-2} + \frac{s}{s-2} \right] = \frac{-1}{s^2(s-1)(s-2)} - \frac{1}{s(s-1)(s-2)}$$

$$*_2 \quad s^2 y_1 + s^2 \mathcal{L}(y_2) = s^2 \mathcal{L}(y_1) + s^2 \left[\frac{1}{s^2(1-s)} \left[\frac{1}{s-2} + \frac{s}{s-2} \right] \right] = \frac{1}{s-2}$$

This is getting very cumbersome! Not only *that*, but I *also* miscopied the problem. Oh, the y_1 and y_2 stuff is fine. Just re-labelling things with indexed variables rather than different letters designating different functions.

It's a lot easier to handle y_1, y_2, \dots, y_{11} and keep things organized.

How about we try some Maple?

I would've done systems (Section 7.6) if there were some excitement over the linear algebra stuff. You *should* see these systems in Diff Eq with Linear Algebra.

$$x(t) = \frac{1}{2} + t e^{2t} - \frac{e^{2t}}{2}, y(t) = \frac{3}{4} - \frac{t}{2} - (e^t)^2 t + \frac{3 e^{2t}}{4}.$$

[Click Here for Maple for #9](#)

[Click Here for PDF of Maple for #9](#)