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7.1 - Definition of the Laplace Transform

o
Recall, linearity property of j% , S# dx
ﬁ,bém p I:J J._ka ":«.c-\tnhs —

d [,S—‘(x)J.bjml— 2 Jx" L

g,béTR / I:J C""" 'Fm-c_lrhs —

5(&9‘&\4—\7(}\)&;: 25?(00\# + bS,(x\Jx
C,r a\q_L—\.‘%! :V\L¢7\J

S o

5(&(—‘&\4—‘7(}\)0\)‘- E‘SQ(\DG\ﬂ + bS,(x\Jx

Xo ¥o

X
No"'t “"'\ai' jK(S,L') J‘L’ k) a -f\...\c,l-.o-\.. ol\ S) ;r |<(‘r¢) /S ('A-s'ls'
'

L stk
Recall IM()"’P"’ -_Pn-Le7v-v’

w b
jt(s,-l') = fo Ju(s.a di

bwooe Vo

_Lf o ﬂ ‘L cx.;“'s lan- Sk(s 4)&’-4 Cov\\l‘uy—e.ﬁ_

O (raidt duerges.

—-—.J:

If C(L’) 4.,,(:-/\46‘ Por -t-?_o
FG) = | rewemdl " brans forms” Cle) b 565,

Laplace Trans form R (F)) = e-s&:{*’) dt.

S(F\ = D o main OC c = g S \ -i (r'\ CohUirj,cSl
Foc wy, we go§uma se\’R (se([} ~or@ "%)
WL d5pamcs w.‘l"" Sl usd wehe
/. F(Q = Fé) lw w +. w«ol..“L.\d::j Jo.+

y=>>00

0
,'-l—'( g‘I—/M a /a-:-“""




241110-7-1-notes.notebook November 12, 2024

TED 3(h - [etea

infinity
exp(—s7)-tdr = I]Hn::o [ —

J

e lst+e 11
0

s+ _st
- () _ e - 4
g ﬂ'm\ st s

4A=>e0

Maple doesn't like this. But if we tell it that s > 0 ahead of time:

assume(s > 0)
infinity 1
J exp(—s7)rdr = —
0 5~

So you get the idea. But we're not going to be evaluating a ton of these. A few, here in 7.1, but
mostly we'll refer to the following table (in the back of the textbook):
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Sufficient conditions for existence of o (F(. {..)) .
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Definition 7.1.2 Exponential Order

A function f defined on [0, %) is said to be of exponential order as t — » if
there exist constants ¢, M > 0, and 7 > 0 such that | f(1)| = Me“ for all t > T.

Basically grow less fast than an exponential.
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Theorem 7.1.2 Sufficient Conditions for Existence

If a function f1s piecewise continuous on [0, %) and of exponential order with ¢ as
specified in Definition 7.1.2, then £ { f(¢)} exists for s > c.

Sufficiency is ""enough or more than enough." You might be able to weaken the condition.
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Stated without proof. Ask me if you want the proof. It's fairly straightforward, but bears some
explanation.

Theorem 7.1.3 Behavior of F(s) as s — =

If a function f1s piecewise continuous on [(), ) and of exponential order with ¢ as
specified in Definition 7.1.2 and £ { f(1)} = F(s), then li_)rrolc F(s) = 0.

In Problems 1 — 18 use Definition 7.1.1 to find £{ f(1)}.

5 _sint, O0=1<m Book Answer:
- f) = 0, t=n Exercises 7.1 (Page 292)
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Evaluating these is a lot of tedious integration by parts. Maple speeds things up quite a bit.

New Command: piecewise

S = t-piecewise(0 <t < m sin(1), 1> 0)
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I was asked about #1 in 7.1 in class, today. I think the exponential definitions of sinh(f) and
cosh(?) were all that was needed, in order to evaluate the improper integral:
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