Section 6.3 - Power Series about Singular Points

We derive the general form of the Indicial Equation
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This confirms the book formula for the General Indicial Equation: »(r — 1) + ra, + b =0.
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Explore series command.

?series
series(sin(x),x=0, §)
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I'm using n =5, but you should also play with n = infinity.
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We can see the Indicial Equation peeking at us from the " term.
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This =1 thing isn't very conducive. Copy-paste from before we subbed in»= 1 and try »=0.

What I'm doing is a bit clumsier than what you might do, because I wanted you to see the false path.
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This tells us that c0 and c2 must be zero and hence all the terms that come after c2. c1 is undetermined
and unrestricted,
and so ¢,x =y, is our first solution, and the reduction-of-order formula gives us y,(x).

We write the solution, step by step:

J exp(x) d
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That wasn't particularly useful. So, let's do a term-by-term integration of a Taylor polynomial and call it
good!

New command: series.

series(exp(x), x, 8)
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This gives us our integrand in the Reduction-of-order formula. Now we integrate it. This is
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The finishing touch is to multiply by y, (x) =
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