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Section 6.3 - Power Series about Singular Points
—
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Basically, they're saying thatx = x0 is a root of multiplicity 1 OR al(x) and a0(x) have factors of

x - X0 of sufficiently high multiplicity to cancel out some or all of the x - x0 factors in a2(x).

We mostly are interested in cases where
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If that be the case, then "regular" just means that the multiplicity of x = x0 is 1.
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Note: Cauchy-Euler Equations have a regular singular point atx = 0.
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Theorem 6.3.1 Frobenius’ Theorem

If x = xp is a regular singular point of the differential equation (1), then there
exists at least one solution of the form
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where the number r is a constant to be determined. The series will converge at
least on some interval 0 < x — xyp < R.
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m Two Series Solutions

Because x = 0 is a regular singular point of the differential equation
3y +y —y=0, (5)

we try to find a solution of the form y = X7_, ¢,xX""".
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We're assuming we've got a power series solution here, because we're at the 200 level and we take
Frobenius at his word! There is a power series solution of the given form. Therefore, the nexative
exponent must go away. Therefore,
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Now we sub the two different 's into the last expression, giving us a nice recurrence relations on
the cn's.

The book converts to k as the index of summation to unify the two series with the same powers of
x. I just shift the n's around, myself. Never learned it this book's way.
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Both of these converge, by Ratio Test. (6.1)
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Is there a way to obtain the indicial equation without all the drama?
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After substituting y = 3, ¢,X""" and the two series in (12) into (13) and carrying
out the multiplication of series, we find the general indicial equation to be

@ r(ir—1) + agr + by = 0, (14)

I think you can prove this with Maple, by truncating all the power series down to their first two or
three terms, because (recall), the Indicial Equation boils down to the first term £ Lj .
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From now on, we can just have the above indicial equation on a cheat sheet!
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Let's see what they mean with Exercise #3

The point x = 0 is a regular singular point of the given differential equation.
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The point x = 0 is a regular singular point of the given differential equation.
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Subbing this into the equation, with r,= 1 gives
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Earlier (failed?) attempt:
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