with(Student| Calculus1])
[ AntiderivativePlot, AntiderivativeTutor, Approximatelnt, ApproximatelntTutor, ArcLength, 1)

ArcLengthTutor, Asymptotes, Clear, CriticalPoints, CurveAnalysis Tutor, DerivativePlot,
DerivativeTutor, DiffTutor, Distance, ExtremePoints, FunctionAverage, FunctionAverageTutor,
FunctionChart, FunctionPlot, GetMessage, GetNumProblems, GetProblem, Hint,
InflectionPoints, IntTutor, Integrand, InversePlot, InverseTutor, LimitTutor,
MeanValueTheorem, MeanValueTheoremTutor, NewtonQuotient, NewtonsMethod,
NewtonsMethodTutor, PointInterpolation, RiemannSum, RollesTheorem, Roots, Rule, Show,
ShowlIncomplete, ShowSolution, ShowSteps, Summand, SurfaceOfRevolution,
SurfaceOfRevolutionTutor, Tangent, TangentSecantTutor, TangentTutor, TaylorApproximation,
TaylorApproximationTutor, Understand, Undo, VolumeOfRevolution,
VolumeOfRevolutionTutor, WhatProblem |

?TaylorApproximation

This is my first pass at Power Series in Diff Eq. TaylorApproximation looks like it might give us what
we want. It's all primed to display a plot of fand its Taylor Series approximation of whatever degree or
span of degrees you choose. I think we'll be more interested in the Taylor Polynomials, themselves. But
just getting started on Chapter 6.

We multiply the first 20 terms of ¢ and sin (x). Crude but
effective

Sometimes the partials sums won't be displayed in either ascending or descending order, unless you ask
in a nice way. The sort command will do this for you. Syntax for the command given below. You can
hit "enter" on the ?sort line that I inserted and see the man pages for sort.

I built these polynomials using the Expressions palette on the left panel. You can enter sums in a very
intuitive way, if you know how to use sigma notation.

Here, I'm adding partial sums for ¢ and sin (x).

n=0

7 n

X
frmxm 2o (1.1)

n=01"

S(x)
1, 1T 3, 1 4 | I 6 1 4

1+x+2x+6x+24 +120x+720x+5040x (1.2)

7 n 2-n+1
— (—1)x
&7 20( (2 n+1)! j



S @)
g(x)
_ts s 1 g 1 9 _ 1 m,
Y e T 0" T 5040 ¥ T 362880 ¥ 39916800 ¢ T 6227020800
1 15

1307674368000
h = x=f(x) + g(x)
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You'll definitely enjoy the TaylorPolynomial command. But you should be pretty good just entering

sums using the palette, like I did, above.

?TaylorPolynomial
with(Student| Calculus1]) :
h := x—TaylorApproximation(sin(x), x =0, degree =17)
h = x v TaylorApproximation(sin(x), x =0, degree="17)
h(x)
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k := x—TaylorApproximation(cos(x), x =0, degree =17)

k := x v TaylorApproximation(cos(x), x =0, degree=17)
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r = x—h(x) k(x)
ri=xe h(x)-k(x) (1.1.5)
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Notice there are only odd powers, and the power of the 4th term in the product is of degree 7! That

means you'd have to be sure to capture the products of the

x" and x° terms, the > and x* terms, the x> and x* terms, and the x and ® terms.

sort(expand(r(x) ), x, ascending)
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Just clobbering the product, directly, with TaylorApproximation seems like cheating.
I'm not sure if I'll ask you to turn the crank on one of these products on a test or not.
I wonder if the class wants or needs more work on partial fractions...
TaylorApproximation(sin(x)-cos(x), degree=11)
x—§x3+125x5—;:5x7+ 28235 P 1554925 X! (1.1.8)

Grind it out by the definition - Didn't Go Far Enough!
Here we are reminded that carrying out the multiplication on the first 4 terms of each of the factors does
not capture the first 4 terms of the product. Here, the first 4 terms of the product contain

f = x—sin(x)

J=xrsin(x) (1.1.1.1)
Jp = D(f)
fp = cos (1.1.1.2)
Jpp == D(/fp)
Jpp = —sin (1.1.1.3)
Jppp = D(Jpp)
fppp == —cos (1.1.1.4)
Jpppp = D( fppp)
fpppp = sin (1.1.1.5)
g = x—cos(x)
g = x> cos(x) (1.1.1.6)

gp = D(g)



gp = x+ —sin(x)
gpp = D(gp)

gpp = x = —cos(x)
gppp = D(gpp)

gppp = sin
gpppp = D(gppp)
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The thing I'm doing wrong is I'm not using enough terms to capture the first 4 terms of the product,

completely.

TaylorApproximation Command
TaylorApproximation(sin(x), degree=11)
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TaylorApproximation(sin(x), degree=1..20, view=[ —10..10,—10..10], output = animation)
Taylor Polynomials - Animation
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f(x) Taylor polynomials
At x =0, for the function f(x) =sin(x), a graph of f(x) and the approximati
f = x—TaylorApproximation(sin(x), degree=15)

f = x v TaylorApproximation(sin(x), degree =15) 24)
f(x)
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g = x—TaylorApproximation(cos(x), degree=15)
g = x = TaylorApproximation(cos(x), degree=15) (2.6)
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