

Linear ODEs

4.1.1 Initial-Value and Boundary-Value Problems

Initial-Value Problem In Section 1.2 we defined an initial-value problem for a general n th-order differential equation. For a linear differential equation an n th-order initial-value problem (IVP) is

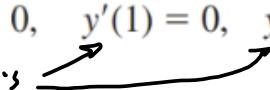
Solve:
$$a_n(x) \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{d^{n-1} y}{dx^{n-1}} + \cdots + a_1(x) \frac{dy}{dx} + a_0(x)y = g(x) \quad (1)$$

Subject to: $y(x_0) = y_0, \quad y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$.

Theorem 4.1.1 Existence of a Unique Solution

Let $a_n(x), a_{n-1}(x), \dots, a_1(x), a_0(x)$ and $g(x)$ be continuous on an interval I and let $a_n(x) \neq 0$ for every x in this interval. If $x = x_0$ is any point in this interval, then a solution $y(x)$ of the initial-value problem (1) exists on the interval and is unique.

E1 $3y''' + 5y'' - y' + 7y = 0, \quad y(1) = 0, \quad y'(1) = 0, \quad y''(1) = 0$

Note $y = 0$ satisfies eq'm & I.C's  $\Rightarrow y = 0$ is 1 sol'n.

E2 $y'' - 4y = 12x, \quad y(0) = 4, \quad y'(0) = 1.$ has a ! solution.

Boundary-Value Problem Another type of problem consists of solving a linear differential equation of order two or greater in which the dependent variable y or its derivatives are specified at *different points*. A problem such as

Solve: $a_2(x) \frac{d^2y}{dx^2} + a_1(x) \frac{dy}{dx} + a_0(x)y = g(x)$

Subject to: $y(a) = y_0, \quad y(b) = y_1$

Other BCs that are possible. Main thing is for 2nd-order, you're going to need 2 BCs.

$$\begin{aligned} y'(a) &= y_0, & y(b) &= y_1 \\ y(a) &= y_0, & y'(b) &= y_1 \\ y'(a) &= y_0, & y'(b) &= y_1, \end{aligned}$$

All of these would fall under the generic BCs:

$$\begin{aligned} \alpha_1 y(a) + \beta_1 y'(a) &= \gamma_1 \\ \alpha_2 y(b) + \beta_2 y'(b) &= \gamma_2. \end{aligned}$$

Existence and uniqueness of solutions for BVPs doesn't follow Theorem 4.1.1.

There may be a ! soln, many solutions, or no solutions, even if continuity conditions on the coefficient are in force and the leading coefficient is never zero on the interval in question.

E3 In Example 9 of Section 1.1 we saw that the two-parameter family of solutions of the differential equation $x'' + 16x = 0$ is

$$x = c_1 \cos 4t + c_2 \sin 4t. \quad (2)$$

If it were an IVP, there would be a ! soln. But BC's: $x(0) = 0 \Leftarrow x(0) = 0$ \rightarrow

many solns.

$$\begin{aligned} x(0) = c_1 = 0 &\Rightarrow c_1 = 0 \\ x\left(\frac{\pi}{2}\right) = c_1 = 0 &\Rightarrow c_1 = 0 \text{ again! No restriction on } c_2, \\ \dots \sin(4t) \text{ is soln} \text{ if } c \in \mathbb{R} \end{aligned}$$

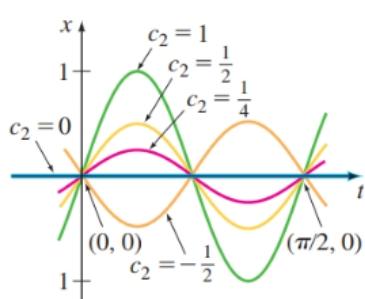


Figure 4.1.2 Solution curves for BVP in part (a) of Example 3

Homogeneous Equations

A linear n th-order differential equation of the form

$$\sum_{k=0}^n a_k \frac{d^k y}{dx^k} = a_n(x) \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x) \frac{dy}{dx} + a_0(x)y = 0 \quad (6)$$

or $\sum_{k=0}^n a_{n-k} \frac{d^{n-k}}{dx^{n-k}} \quad (\text{Descending order, as original.})$

is said to be homogeneous.

$$a_n(x) \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x) \frac{dy}{dx} + a_0(x)y = g(x), \quad (7)$$

is said to be nonhomogeneous.

Differential Operators: $\frac{d^n}{dx^n} = D^n$

$$\sum_{k=0}^n a_{n-k} \frac{d^{n-k}}{dx^{n-k}}(y) = \sum_{k=0}^n a_{n-k} D^{n-k} y = \left(\sum_{k=0}^n a_{n-k} D^{n-k} \right) y, \text{ because}$$

differentiation respects addition and scalar multiplication.

This is an example of a LINEAR OPERATOR:

L is a linear operator means

$$L(\alpha f + \beta g) = \alpha L(f) + \beta L(g) \quad \alpha, \beta \text{ constant, } f, g \text{ functions}$$

Differentiation:

$$\begin{aligned} \frac{d}{dx} [6x^2 + 5 \sin(x)] &= 6 \frac{d}{dx}(x^2) + 5 \frac{d}{dx}(\sin(x)) \\ &= 12x + 5 \cos(x) \end{aligned}$$

$$D(\alpha f + \beta g) = \alpha Df + \beta Dg$$

Superposition Principle: (Old sedimentary rocks lie under young rocks.)

Theorem 4.1.2 Superposition Principle—Homogeneous Equations

Let y_1, y_2, \dots, y_k be solutions of the homogeneous n th-order differential equation (6) on an interval I . Then the linear combination

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_k y_k(x),$$

where the $c_i, i = 1, 2, \dots, k$ are arbitrary constants, is also a solution on the interval.

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_k y_k(x) = \sum_{i=1}^k c_i y_i(x)$$

is a linear combination on the functions y_1, y_2, \dots, y_k

Proof Let $L_y = \sum_{i=0}^n a_i D^i y = 0$ and y_1, y_2, \dots, y_k be solns.

$$\begin{aligned} \text{Then } L \left(\sum_{j=1}^k c_j y_j(x) \right) &= \sum_{i=0}^n a_i D^i \left(\sum_{j=1}^k c_j y_j(x) \right) = \sum_{i=0}^n \left(\sum_{j=1}^k c_j (a_i D^i y_j(x)) \right) \\ &= \sum_{i=0}^n \left(c_1 a_i D^i y_1(x) + c_2 a_i D^i y_2(x) + \dots + c_k a_i D^i y_k(x) \right) \\ &= c_1 a_0 y_1(x) + c_2 a_0 y_2(x) + \dots + c_k a_0 y_k(x) \\ &\quad + c_1 a_1 D y_1 + c_2 a_1 D y_2 + \dots + c_k a_1 D y_k \\ &\quad + c_1 a_2 D^2 y_1 + c_2 a_2 D^2 y_2 + \dots + c_k a_2 D^2 y_k \\ &\quad + \dots \\ &\quad + c_1 a_n D^n y_1 + c_2 a_n D^n y_2 + \dots + c_k a_n D^n y_k \end{aligned}$$

$$\begin{aligned} c_1 \sum_{i=0}^n a_i D^i y_1 + c_2 \sum_{i=0}^n a_i D^i y_2 + \dots + c_k \sum_{i=0}^n a_i D^i y_k \\ c_1(0) + c_2(0) + \dots + c_k(0) = 0 \rightarrow \\ \sum_{j=1}^k c_j y_j \text{ is a soln, too!} \end{aligned}$$

Bottom line: linear combinations of solutions to a linear homogeneous ODE are also solutions.

Corollaries to Theorem 4.1.2

- (A) A constant multiple $y = c_1 y_1(x)$ of a solution $y_1(x)$ of a homogeneous linear differential equation is also a solution.
- (B) A homogeneous linear differential equation always possesses the trivial solution $y = 0$.

D 4.1.1

LINEAR INDEPENDENCE
 we say that $(n$ vectors $\bar{v}_1, \bar{v}_2, \dots, \bar{v}_n)$ or n functions $f_1(x), \dots, f_n(x)$
 are linearly independent if the only solution to
 (the equation $c_1\bar{v}_1 + c_2\bar{v}_2 + \dots + c_n\bar{v}_n = 0$ is $c_1 = c_2 = \dots = c_n = 0$)
 and the eqn $k_1f_1(x) + k_2f_2(x) + \dots + k_nf_n(x) = 0$ for all x has
 the unique (trivial) solution $k_1 = \dots = k_n = 0$

For now, in *this* course, we're more interested in the linear independence of *functions*.

Linear independence means that only trivial linear combinations of the set sums to zero.

E5 The set of functions $f_1(x) = \cos^2 x, f_2(x) = \sin^2 x, f_3(x) = \sec^2 x, f_4(x) = \tan^2 x$ is linearly dependent on the interval $(-\pi/2, \pi/2)$ because

$$\begin{aligned}
 & c_1 \cos^2 x + c_2 \sin^2 x + c_3 \sec^2 x + c_4 \tan^2 x = 0 \\
 & c_1(1 - \sin^2 x) + c_2 \sin^2 x + c_3 \cdot (\sec^2 x + 1) + c_4 \tan^2 x = 0 \\
 & = c_1 - c_1 \sin^2 x + c_2 \sin^2 x + c_3 \sec^2 x + c_3 + c_4 \tan^2 x \\
 & \text{Let } \boxed{c_1 = -c_3} \\
 & = -c_3 + c_3 \sin^2 x + c_2 \sin^2 x + c_3 \sec^2 x + c_4 \tan^2 x + c_3 \\
 & = c_3 \sin^2 x + c_2 \sin^2 x + c_3 \sec^2 x + c_4 \tan^2 x \\
 & \text{Let } \boxed{c_3 = -c_2} \\
 & = -c_2 \tan^2 x + c_4 \tan^2 x \\
 & \text{Let } \boxed{c_4 = c_2} \\
 & \text{Then we have proved its dependent.}
 \end{aligned}$$

$$\text{Let } c_2 = 1, c_3 = -1, c_1 = 1, c_4 = 1$$

Then

$$\begin{aligned}
 & c_1 \cos^2 x + c_2 \sin^2 x + c_3 \sec^2 x + c_4 \tan^2 x = 0 \\
 & \cos^2 x + \sin^2 x - \sec^2 x + \tan^2 x \\
 & = 1 - \sin^2 x + \sin^2 x - \tan^2 x - 1 + \tan^2 x = 0 \quad \checkmark
 \end{aligned}$$

There's a quicker way to establish linear independence of a set of functions, called the Wronskian.

In the homework, they will ask if they're independent and if they're not, it will want you to find a solution for the constants that make the linear combination = 0. But if they ARE independent, you're going to be done.

Definition 4.1.2 Wronskian

Suppose each of the functions $f_1(x), f_2(x), \dots, f_n(x)$ possesses at least $n - 1$ derivatives. The determinant

$$W(f_1, f_2, \dots, f_n) = \begin{vmatrix} f_1 & f_2 & \dots & f_n \\ f_1' & f_2' & \dots & f_n' \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \dots & f_n^{(n-1)} \end{vmatrix},$$

where the primes denote derivatives, is called the Wronskian of the functions.

Trouble is, you may not remember how to do determinants!

I will compute a few, and explain what I'm doing, but I don't think we have time in class to develop the theory very much. So I created a quick intro to linear algebra sufficient to work the exercises.

[Click Here for Brief Linear Algebra Intro](#)

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad \bar{x} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$

$$A \bar{x} = \begin{bmatrix} 1(5) + 2(6) \\ 3(5) + 4(6) \end{bmatrix} = \begin{bmatrix} 17 \\ 39 \end{bmatrix}.$$

$$c_1 - 5c_2 = 7$$

$$c_1 + 4c_2 = -1$$

$$A = \begin{bmatrix} 1 & -5 \\ 1 & 4 \end{bmatrix}, \quad \bar{b} = \begin{bmatrix} 7 \\ -1 \end{bmatrix} \text{ and}$$

we want $\bar{x} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ so that

$$A \bar{x} = \bar{b}$$

$$A \bar{x} = \begin{bmatrix} 1 & -5 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 7 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} c_1 - 5c_2 \\ c_1 + 4c_2 \end{bmatrix} = \begin{bmatrix} 7 \\ -1 \end{bmatrix}$$

Cool thing is if we had an inverse for A , say A^{-1}
if $A^{-1}A = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ = multiplicative identity

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 7 \\ -1 \end{bmatrix} = \begin{bmatrix} 7 \\ -1 \end{bmatrix}$$

Extend this to Matrices:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1(5) + 2(7) & 1(6) + 2(8) \\ 3(5) + 4(7) & 3(6) + 4(8) \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad A^{-1} = -\frac{1}{3} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$A \bar{x} = \bar{b}$$

$$A^{-1}A \bar{x} = A^{-1} \bar{b}$$

$$I \bar{x} = A^{-1} \bar{b}$$

$$\bar{x} = A^{-1} \bar{b}$$

Theorem 4.1.3 Criterion for Linearly Independent Solutions

Let y_1, y_2, \dots, y_n be n solutions of the homogeneous linear n th-order differential equation (6) on an interval I . Then the set of solutions is **linearly independent** on I if and only if $W(y_1, y_2, \dots, y_n) \neq 0$ for every x in the interval.

Fact: If you have n solutions to an n th-order homogeneous ODE and they form a linearly independent set, then you know you have captured *all* the solutions!

Fact: You can sometimes make a set of functions linearly independent by restricting the interval of definition.

$$2 \times 2 \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$3 \times 3 \quad \text{EXPAND by minors across row 1:}$$

$$\begin{vmatrix} + & - & + \\ a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

$$= a(ei - hf) - b(di - gf) + c(dh - ge)$$

Wronskian for the set $e^t, \sin(t)$

$$\begin{vmatrix} e^t & \sin(t) \\ e^t & \cos(t) \end{vmatrix} = e^t \cos(t) - e^t \sin(t) = 0 \text{ when } t = \frac{\pi}{4}$$

(or anywhere $\tan(t) = 1$)

$$e^t (\cos(t) - \sin(t)) = 0 \Rightarrow$$

$$\cos(t) = \sin(t)$$

$$\tan(t) = 1$$

You'd have to restrict away from $t = \frac{\pi}{4}$

Example 5

with(VectorCalculus):

Wronskian([cos(x)^2, sin(x)^2, sec(x)^2, tan(x)^2], x, 'determinant')

$$\begin{vmatrix} \cos(x)^2 & \sin(x)^2 & \sec(x)^2 & \tan(x)^2 \\ -2\cos(x)\sin(x) & 2\cos(x)\sin(x) & 2\sec(x)^2\tan(x) & 2\tan(x)(1+\tan(x)^2) \\ 2\sin(x)^2 - 2\cos(x)^2 & -2\sin(x)^2 + 2\cos(x)^2 & 4\sec(x)^2\tan(x)^2 + 2\sec(x)^2(1+\tan(x)^2) & 2(1+\tan(x)^2)^2 + 4\tan(x)^2(1+\tan(x)^2) \\ 8\cos(x)\sin(x) & -8\cos(x)\sin(x) & 8\sec(x)^2\tan(x)^3 + 16\sec(x)^2\tan(x)(1+\tan(x)^2) & 16(1+\tan(x)^2)^2\tan(x) + 8\tan(x)^3(1+\tan(x)^2) \end{vmatrix}$$

$| \sim | = 0 \Rightarrow$ Linearly Dependent

Pg 125: "It follows... that when you have n solutions of the homogeneous linear n th-order ODE given in (6) on an interval I , then the Wronskian is either identically zero or never zero on the interval.

I have to think about this a little bit. Still not quite seeing it, although if it's true, it gives us an easy way to determine independence/dependence. Just substitute one value of t . If you get 0, then they're dependent. If you get something nonzero, then they're independent?!

I guess it just depends on the interval of definition. More on this, later. I don't quite remember all of the theory.

In any case, we can clobber Wronskians of any size with Maple and solve messy equations with Maple...

[Right-click here to download \(Save as...\) Maple that accompanies this section.](#)

[For 2x2 and 3x3, these determinants aren't all that technically difficult.](#)

[Click here to view PDF of the Maple](#)

Definition 4.1.3 Fundamental Set of Solutions

Any set y_1, y_2, \dots, y_n of n linearly independent solutions of the homogeneous linear n th-order differential equation (6) on an interval I is said to be a **fundamental set of solutions** on the interval.

Theorem 4.1.4 Existence of a Fundamental Set

There exists a fundamental set of solutions for the homogeneous linear n th-order differential equation (6) on an interval I .

Theorem 4.1.5 General Solution—Homogeneous Equations

Let y_1, y_2, \dots, y_n be a fundamental set of solutions of the homogeneous linear n th-order differential equation (6) on an interval I . Then the **general solution** of the equation on the interval is

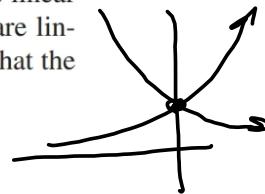
$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x),$$

$$\begin{aligned} c_1 e^{3x} + c_2 e^{-3x} &= 0 \\ c_1 e^3 + c_2 e^{-3} &= c_1 + c_2 = 0 \\ \Rightarrow c_1 &= -c_2 \end{aligned}$$

where $c_i, i = 1, 2, \dots, n$ are arbitrary constants.

E7 The functions $y_1 = e^{3x}$ and $y_2 = e^{-3x}$ are both solutions of the homogeneous linear equation $y'' - 9y = 0$ on the interval $(-\infty, \infty)$. By inspection the solutions are linearly independent on the x -axis. This fact can be corroborated by observing that the Wronskian

$\text{W}(e^{3x}, e^{-3x}) = 0$ or $(0, \infty)$ or $(-\infty, 0)$?



$$W(e^{3x}, e^{-3x}) = \begin{vmatrix} e^{3x} & e^{-3x} \\ 3e^{3x} & -3e^{-3x} \end{vmatrix} = -6 \neq 0$$

for every x . We conclude that y_1 and y_2 form a fundamental set of solutions, and consequently, $y = c_1 e^{3x} + c_2 e^{-3x}$ is the general solution of the equation on the interval. ■

Clobbering it with Maple:

`Wronskian([exp(3·x), exp(-3·x)], x,'determinant')`

Unevaluated determinant

$$\begin{bmatrix} e^{3x} & e^{-3x} \\ 3e^{3x} & -3e^{-3x} \end{bmatrix}, -6e^{3x}e^{-3x}$$

Evaluated determinant

`simplify(-6 e3x e-3x)`

Click here for PDF

of this Maple session.

-6

By hand:

$$\begin{vmatrix} e^{3x} & e^{-3x} \\ 3e^{3x} & -3e^{-3x} \end{vmatrix} = e^{3x}(-3e^{-3x}) - e^{-3x}(3e^{3x})$$

$$= -3e^3 - 3e^{-3} = -6e^0 \neq 0 \quad \forall x \in \mathbb{R} \rightarrow$$

Linearly independent.

E8 - We just got done proving the $\exp(3x)$ and $\exp(-3x)$ are linearly independent. They are also solutions of the differential equation

Thus $y'' - 9y = 0$
 $c_1 e^{3x} + c_2 e^{-3x}$ is the general solution.

But wait! $y = 4 \sinh(3x) - 5e^{-3x}$ is ALSO a solution

$$f := x \mapsto 4 \cdot \sinh(3 \cdot x) - 5 \cdot \exp(-3 \cdot x)$$

$$f := x \mapsto 4 \cdot \sinh(3 \cdot x) - 5 \cdot e^{-3 \cdot x}$$

$$fp := D(f)$$

$$fp := x \mapsto 12 \cdot \cosh(3 \cdot x) + 15 \cdot e^{-3 \cdot x}$$

$$fpp := D(fp)$$

$$fpp := x \mapsto 36 \cdot \sinh(3 \cdot x) - 45 \cdot e^{-3 \cdot x}$$

$$fpp(x) - 9 \cdot f(x)$$

$$0$$

Either theory is wrong, or $\exists c_1, c_2 \ni c_1 e^{3x} + c_2 e^{-3x} = 4 \sinh(3x) - 5e^{-3x}$

The latter proves to be true, when we recall

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

Let's find c_1, c_2 :

$$\begin{aligned} c_1 e^{3x} + c_2 e^{-3x} &= 4 \sinh(3x) - 5e^{-3x} = 3 \left(\frac{e^{3x} - e^{-3x}}{2} \right) - 5e^{-3x} \\ &= \frac{3}{2} e^{3x} - \frac{3}{2} e^{-3x} - 5e^{-3x} \\ &= 2e^{3x} - 7e^{-3x} \end{aligned}$$

$$c_1 = 2, c_2 = -7 \text{ does the trick!}$$

Nonhomogeneous Solutions

Consider the nonhomogeneous version of (6), namely

$$(7) \quad a_n D^n y + a_{n-1} D^{n-1} y + \dots + a_1 D y + a_0 y = g(x)$$

We're going to build solutions to this new problem by solving the homogeneous equation (6) ($g(x) = 0$), and then finding a *particular* solution that yields $g(x)$ on the right hand side.

The new solution will be the sum of the solution to (6) and the particular solution. The solution to the homogeneous equation y_c and the particular solution y_p

$y_c = \text{complementary solution} = \underline{\text{Kernel of the Diff. operators.}}$

$y_p = \text{particular solution}$

\downarrow The stuff that gets sent to 0.

By substitution the function $y_p = -\frac{11}{12} - \frac{1}{2}x$ is readily shown to be a particular solution of the nonhomogeneous equation

$$y''' - 6y'' + 11y' - 6y = 3x. \quad (11)$$

To write the general solution of (11), we must also be able to solve the associated homogeneous equation

$$y''' - 6y'' + 11y' - 6y = 0.$$

But in Example 9 we saw that the general solution of this latter equation on the interval $(-\infty, \infty)$ was $y_c = c_1e^x + c_2e^{2x} + c_3e^{3x}$. Hence the general solution of (11) on the interval is

$$y = y_c + y_p = c_1e^x + c_2e^{2x} + c_3e^{3x} - \frac{11}{12} - \frac{1}{2}x. \quad \blacksquare$$

$$\begin{aligned} y''' - 6y'' + 11y' - 6y &= 0 \\ (D^3 - 6D^2 + 11D - 6)y &= 0 \quad \rightarrow D = 1, 2, 3 \\ \rightarrow y &= c_1e^t + c_2e^{2t} + c_3e^{3t} = y_c \end{aligned}$$

Now let for $y = c_1t + c_2$
Then $y' = c_1$ & $y'' = 0$, so we only have to solve

$$\begin{aligned} 11y' - 6y &= 3t \\ 11(c_1) - 6(c_1t + c_2) &= 3t \\ 11c_1 - 6c_1t - 6c_2 &= 3t \quad \rightarrow \\ 11c_1 - 6c_2 &= 0 \quad \& \end{aligned}$$

$$-6c_1 = 3 \quad \rightarrow$$

$$\boxed{c_1 = \frac{1}{2}} \quad \&$$

$$11\left(\frac{1}{2}\right) - 6c_2 = 0$$

$$\frac{11}{2} = 6c_2$$

$$\boxed{c_2 = -\frac{11}{12}}$$

$$\text{So } y_p = -\frac{1}{2}t - \frac{11}{12}$$

& $y = y_c + y_p$ is the general solution.

Particular Solutions will be sort of tricky and sort of easy at the same time.

MOAR Superposition Principle!!!

Theorem 4.1.7 Superposition Principle—Nonhomogeneous Equations

Let $y_{p_1}, y_{p_2}, \dots, y_{p_k}$ be k particular solutions of the nonhomogeneous linear n th-order differential equation (7) on an interval I corresponding, in turn, to k distinct functions g_1, g_2, \dots, g_k . That is, suppose y_{p_i} denotes a particular solution of the corresponding differential equation

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = g_i(x), \quad (12)$$

where $i = 1, 2, \dots, k$. Then

$$y_p(x) = y_{p_1}(x) + y_{p_2}(x) + \dots + y_{p_k}(x) \quad (13)$$

is a particular solution of

$$\begin{aligned} a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y \\ = g_1(x) + g_2(x) + \dots + g_k(x). \end{aligned} \quad (14)$$

$L(y) = \sin(x) - \cos(x)$ *find y_p for $\sin(x)$* *find y_p for $\cos(x)$* *then add them*

This is basically saying that if you have a big, messy right hand side that has a whole bunch of functions added together, you can find a particular solution for each summand and find a particular solution to the original nonhomogeneous equation by adding them together!

$$\begin{aligned} L(y) &= g_1(x) + g_2(x) \\ \text{find } y_{p_1} \text{ for } g_1(x) \text{ & } y_{p_2} \text{ for } g_2(x) \text{ & } \\ \text{Let } y_p &= y_{p_1} + y_{p_2}. \end{aligned}$$

The "L" stands for any linear operator, but it will be the differential operator given by the left-hand-side of the differential equation.

$$\begin{aligned} L(y_{p_1} + y_{p_2}) &= L(y_{p_1}) + L(y_{p_2}) = g_1(x) + g_2(x) \checkmark \\ &\quad \text{“ “} \\ &\quad \sin(x) \quad -\cos(x) \end{aligned}$$

