$$f_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

$$z = f(x, y)$$

$$f_y(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

Suppose that we now wish to find the rate of change of z at (x_0, y_0) in the direction of an arbitrary unit vector $\mathbf{u} = \langle a, b \rangle$.

FIGURE 2

A unit vector $\mathbf{u} = \langle a, b \rangle = \langle \cos \theta, \sin \theta \rangle$ $\mathbf{u} = \langle a, b \rangle = \langle \cos u, \sin u \rangle$

Not too sure what that last bit is...

14.6 Directional Derivatives and the Gradient Vector

Where we try to convince you that it *all* boils down to the gradient and that the partials with respect to x and y entirely describe the "tilt" of a surface at a point. First, we define Directional Derivative.

2 Definition The **directional derivative** of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

This is the "tilt" of the surface in the direction of u.

if this limit exists.

Theorem If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}} f(x, y) = f_{x}(x, y) a + f_{y}(x, y) b$$

Define $g(h) = f(x_0 + ha, y_0 + hb)$ by basically holding all the other variables fixed.

$$g'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h} = D_{\mathbf{u}} f(x_0, y_0)$$

On the other hand, we can write g(h) = f(x, y), where $x = x_0 + ha$, $y = y_0 + hb$, so the Chain Rule (Theorem 14.5.2) gives

the Chain Rule (Theorem 14.5.2) gives
$$f(x,y) = f(x(h), y(h))$$
See Page 978
$$\frac{df}{dh} = g'(h) = \frac{\partial f}{\partial x} \frac{dx}{dh} + \frac{\partial f}{\partial y} \frac{dy}{dh} = f_x(x, y) a + f_y(x, y) b$$

$$x = x(h), y = y(h),$$

$$\frac{dy}{dh} = b$$

because everything else there is fixed.

If we now put h = 0, then $x = x_0$, $y = y_0$, and

$$g'(0) = f_x(x_0, y_0) a + f_y(x_0, y_0) b$$

$$g'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$
 the tangent plane, and can give you

Comparing Equations 4 and 5, we see that

$$D_{\mathbf{u}}f(x_0, y_0) = f_x(x_0, y_0) a + f_y(x_0, y_0) b \qquad \overline{u} = e \overline{c} + b \overline{f}$$

This concludes the proof.

When the angle that \mathbf{u} makes with the positive x-axis is handy, and since \mathbf{u} is of length 1, we obtain:

If the unit vector \mathbf{u} makes an angle θ with the positive x-axis (as in Figure 2), then we can write $\mathbf{u} = \langle \cos \theta, \sin \theta \rangle$ and the formula in Theorem 3 becomes

II-17 Find the directional derivative of the function at the given point in the direction of the vector v.

II.
$$f(x, y) = 1 + 2x\sqrt{y}$$
, (3, 4), $\mathbf{v} = \langle 4, -3 \rangle$