Section 14.5 The Chain Rule

14.5 #s 1, 4, 7, 10, 13, (17-20 (optional)), 24, 27, 32, 35, 43*, 45*

The Chain Rule (Case 1) Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(t) and y = h(t) are both differentiable functions of t. Then z is a differentiable function of t and

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Note the interplay of $d - vs - \partial$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

$$2 = x^{2}y^{3} \implies x(t) = t^{2} - 1, y(t) = sin(t)$$

$$\frac{dz}{dt} = 2x \frac{dx}{dt} + 2y \frac{dy}{dt}$$

$$= 2xy^{3} \cdot 2t + 3x^{2}y^{2} \cdot cost$$

$$= 2(t^{2} - 1)(sin^{3}(t))(2t) + 3(t^{2} - 1)^{2}(sin^{2}(t))(cos(t))$$

The Chain Rule (Case 2) Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s, t) and y = h(s, t) are differentiable functions of s and t. Then

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \qquad \qquad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

Note that we're no longer talking about a space curve, but a surface, now. When x and y both depended on one (the same) parameter t, the function was a 1-dimensional object embedded in 3-space. When they each depend on 2 parameters, you get a 2-dimensional object embedded in 3-space (a surface).

In the 2-parameter case, we say that s and t are **independent** variables, x and y are **intermediate** variables, and z is the **dependent** variable.

This upgrades to arbitrary number of intermediate and independent variables in the natural way:

4 The Chain Rule (General Version) Suppose that u is a differentiable function of the n variables x_1, x_2, \ldots, x_n and each x_j is a differentiable function of the m variables t_1, t_2, \ldots, t_m . Then u is a function of t_1, t_2, \ldots, t_m and

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

for each i = 1, 2, ..., m.

EXAMPLE 5 If $u = x^4y + y^2z^3$, where $x = rse^t$, $y = rs^2e^{-t}$, and $z = r^2s\sin t$, find the value of $\frac{\partial u}{\partial s}$ when r = 2, s = 1, t = 0.

EXAMPLE 7 If z = f(x, y) has continuous second-order partial derivatives and $x = r^2 + s^2$ and y = 2rs, find (a) $\partial z/\partial r$ and (b) $\partial^2 z/\partial r^2$.

(a)
$$\frac{d^2}{dr} = \frac{d^2}{dx} \cdot \frac{dx}{dr} + \frac{d^2}{dy} \cdot \frac{dy}{dr}$$

$$= \frac{d^2}{dx} \cdot 2r + \frac{d^2}{dy} \cdot 2s = 2r \frac{d^2}{dx} + 2s \frac{d^2}{dy}$$

$$(b) \frac{d}{dr} \left[\frac{d^2}{dr} \right] = \frac{d}{dr} \left[2r \frac{d^2}{dx} + 2s \frac{d^2}{dy} \right]$$

$$= 2 \frac{d^2}{dx} + (2r) \frac{d}{dr} \left(\frac{d^2}{dx} \right) + 2s \frac{d}{dr} \left(\frac{d^2}{dy} \right)$$

$$= 2 \frac{d^2}{dx} + 2r \frac{d^2}{dr} + 2s \frac{d^2}{dr} = \frac{d^2}{dr^2}$$

$$= 2 \frac{d^2}{dx} + 2r \frac{d^2}{dr} + 2s \frac{d^2}{dr} = \frac{d^2}{dr^2}$$

Chain Rule

and assume that y is (at least locally) a function of x. F(x, y) = 0

Differentiating both sides w.r.t.x gives $\frac{\partial F}{\partial x} \frac{dx}{dx} + \frac{\partial F}{\partial y} \frac{dy}{dx} = 0$

$$\frac{dx}{dx} = 1$$

$$-\frac{\partial F}{\partial y} \cdot \frac{\partial y}{\partial x} = \frac{\partial F}{\partial x} \implies \frac{\partial y}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$$

and we obtain a slick formula for $\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial F}} = -\frac{F_x}{F_y}$ (Cheat sheet material)

At first, this seems a bit odd way to do things, but it deepens our understanding of some of our techniques for implicit differentiation, and shortens up a lot of the repetitive work involved in using implicit differentiation to say things about curves that are *not* functions.

EXAMPLE 8 Find y' if $x^3 + y^3 = 6xy$.

"OLD"
$$3x^{2}+3y^{2}y' = 6y + 6xy'$$

$$3y^{2}y' - 6xy' = 6y - 3x^{2}$$

$$y' = \frac{6y - 3x^{2}}{2x^{2}6x}$$

$$3x^{2}+3y^{2}y' = 6y + 6xy'$$

$$3x^{2}+3y^{2}y' = 6y - 3x^{2}$$

$$y' = \frac{6y - 3x^{2}}{3y^{2}-6x}$$

NEW''
$$x^{3}+y^{3}-6xy = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{3x^{2}-6y}{3y^{2}-6x}$$

Ouicker. More formulaic.

$$F(x, y, z) = 0$$

$$Assume z = f(x, y)$$

$$F(x, y, f(x, y)) = 0$$

$$\frac{\partial F}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x} = 0$$

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x} = 0$$

$$\frac{\partial F}{\partial z} = -\frac{\partial F}{\partial z}$$

$$\frac{\partial z}{\partial z} = -\frac{\partial F}{\partial z}$$

$$\frac{\partial z}{\partial z} = -\frac{\partial F}{\partial z}$$

$$\frac{\partial z}{\partial z} = -\frac{\partial F}{\partial z}$$