Hack the code, below to implement the problem assigned.
To execute a Maple command, you just hit enter on the command line.
This file is entitled 14-4-handout-for-maple.
Error, missing operator or ‘;

1. Right-click and download as "All Files" (The default is "xml" which is worthless.)
2. Remove the .xml file suffix and replace it with .mw before you save it.
3. Modify the code to represent the same work for the function and the point of interest assigned to you.
4. Tweak the limits of the plot3d, SpaceCurve commands, for better presentation of the image.
5. Experiment with right-click on the images created. There are many options. I like the Zoom and Pan options, in particular.
6. Finally, save this file using your last name.

An implementation of a Section $\mathbf{1 4 . 3}$ problem that's a lead-in into 14.4.

Load the packages we'll need:
with(plots) :
with(VectorCalculus) :
The following is the plane $x=1$, parallel to the $y z$-plane. I'll want you to do a 2 nd plane, as well, parallel to the $x z$-plane.
plotplane1 $:=$ implicitplot $3 d(x=1, x=-5 . .5, y=-5 . .7, z=-50 . .25$, axes $=$ boxed, style
$=$ surfacewireframe, labels $=[x-$ axis, $y-$ axis, $z-$ axis $]$, transparency $=.5): \%:$

You'll need to edit the following for your particular function:

$$
\begin{align*}
& g:=(x, y) \rightarrow 6-x-x^{2}-2 \cdot y^{2} \\
& g(x, y) \tag{1.1}\\
& g\left(=(x, y) \mapsto 6+(-x)+\left(-x^{2}\right)+\left(-2 y^{2}\right)\right. \tag{1.2}\\
& g(1,2) \quad-x^{2}-2 y^{2}-x+6 \\
&
\end{align*}
$$

plotfunc $:=\operatorname{plot} 3 d(g,-5 . .5,-5 . .5$, axes $=$ normal, style $=$ surfacewireframe, color $=$ green, transparency $=.5): \%$:

$$
\begin{array}{ll}
g x:=\mathrm{D}[1](g) & g x:=(x, y) \mapsto-2 x-1 \\
g y:=\mathrm{D}[2](g) & g y:=(x, y) \mapsto-4 y
\end{array}
$$

The following is the trace in the plane $x=1$. You'll want to edit this, and you will also need a gtrace 2 defined similarly, but at right angles to this for a plane parallel to the $x z$-plane.
gtracel $:=g(1, y)$

$$
\begin{equation*}
\text { gtracel }:=-2 y^{2}+4 \tag{1.6}
\end{equation*}
$$

As expected, the following is only half of it. You'll need the other half, too.
gtraceprime 1: diff (gtracel, y)

$$
\begin{equation*}
-4 y \tag{1.7}
\end{equation*}
$$

I'll want the other tangent line plotted, as well as the one, below:
plottanline1 $:=$ SpaceCurve $(\langle 1, \mathrm{t}+2,-4-8 \cdot \mathrm{t}\rangle, t=-5 . .5$, color $=$ red, thickness $=3): \%$:

You'll need a plottrace2, for the plane running parallel to the x-axis.
plottracel $:=$ SpaceCurve $\left(\left\langle 1, t, 4-2 \cdot t^{2}\right\rangle, t=-5 . .5\right.$, color $=$ blue, thickness $\left.=3\right): \%$:
plotthepoint $:=$ pointplot $3 d(\{[1,2,-4]\}$, symbol $=$ solidcircle, symbolsize $=20$, color $=$ black $): \%$:
display([plotfunc, plotplane1, plottrace1, plottanline1, plotthepoint], axes $=$ boxed, labels $=[x$

- axis, y - axis, z - axis])

15.4 has us constructing tangent planes to a point on a surface

tanplane $:=(x, y) \rightarrow g x(1,2) \cdot(x-1)+g y(1,2) \cdot(y-2)-4$

$$
\begin{equation*}
\text { tanplane }:=(x, y) \mapsto g x(1,2)(x-1)+(g y(1,2)(y-2))-4 \tag{2.1}
\end{equation*}
$$

tanplaneplot $:=$ plot3d(tanplane, $-5 . .5,-5 . .5$, axes $=$ normal, style $=$ surfacewireframe $): \%:$
The display command allows you to put named plots into one plot:
display ([plotfunc, tanplaneplot, plottrace1, plottanline1, plotthepoint], axes $=$ boxed, labels $=[x, y$, $z]$)

