A cylinder is a surface that consists of all lines (called rulings) that are parallel to a given line and pass through a given plane curve. 512.6 Quadric

Wow! I never would've thought to word it that way, but what a neat definition!

$$z = x^2$$

Notice that the equation of the graph, $z = x^2$, doesn't involve y.

This means that any vertical plane with equation y = k(parallel to the xz-plane) intersects the graph in a curve with equation $z = x^2$.

so these vertical traces are parabolas.

Missing variable is typical of cylinders, in general.

But if the rulings are skew with respect to coordinate axes, things can get pretty ugly.

A line to which all rulings are parallel is the y-axis. Or any line parallel to the y-axis.

If you hold the y-value constant, say, fix y = 0, you're taking a cross section of this cylinder (actually, we'd interpret it as a "trough," whose sides make a parabola shape.

Figure 1 shows how the graph is formed by taking the parabola $z = x^2$ in the xz-plane and moving it in the direction of the y-axis.

The surface $z = x^2$ is a parabolic cylinder

Quadric Surfaces

A **quadric surface** is the graph of a second-degree equation in three variables x, y, and z. The most general such equation is

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0$$

$$Ax^{2} + By^{2} + Cz^{2} + J = 0$$
 or $Ax^{2} + By^{2} + Iz = 0$

$$x^2 + y^2 = 1$$
 isn't a circle in 3-D. It's a cylinder. One that happens to be

a tube, which was probably our preconception of what a cylinder is.

By our definition, $y = \sin x$ is a cylinder! Imagine corrugated metal siding, stretching up and down, forever.

As for how to handle when these are tilted on their sides, holding one variable constant still gives you a curve, and you're forming traces (slices) that may stack up, like a leaning Tower of Pisa.

Pick a z-value. Draw the circle/ellipse. Drop down the z-value. Draw the circle. Ideally, your cross-sections are normal to the rulings. But this one, we didn't.

We built it so the tracings were parallel to the xy-plane.

EXAMPLE 3 Use traces to sketch the quadric surface with equation

$$x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$$

$$z = 0 x^2 + y^2/9 = 1$$

$$x^2 + \frac{y^2}{9} = 1 - \frac{k^2}{4} \qquad z = k$$

FIGURE 4

The ellipsoid
$$x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$$

$$k^2 < 4$$
,

$$-2 < k < 2$$
.

EXAMPLE 4 Use traces to sketch the surface $z = 4x^2 + y^2$.

$$x = k z = y^2 + 4k^2$$

are traces in the plane x = k, that is, in a plane parallel to the yz-plane. x = 0 is the easiest to get...

I imagine there's a cut-off, where if you tilt your traces enough, they would go from ellipses to parabolas, or viceversa. You think?

FIGURE 5

The surface $z = 4x^2 + y^2$ is an elliptic paraboloid. Horizontal traces are ellipses; vertical traces are parabolas.

I imagine if the coefficients of the x^2 and y^2 were the same, it'd be called a 'circular paraboloid.'

EXAMPLE 5 Sketch the surface $z = y^2 - x^2$.

Traces in x = k are $z = y^2 - k^2$

Looking towards the origin, from somewhere on the x-axis.

The lowest one is the closest one to us, apparently corresponding to x = +/-2. So we're actually looking 2 of those cross-sections, one behind the other, in this view.

So we're in a valley that cuts into a mountain, and the y-axis represents the height of the mountain pass, and there's an identical valley, down the other side of the pass...

Traces in y = k are $z = -x^2 + k^2$

This wasn't much help to me, because I couldn't see how they tied in with the slices in the previous picture.

Traces in z = k are $y^2 - x^2 = k$ Oh! NOW I can see it!

It's a saddle! If I'm sitting on the screen, and my eyes are pointed in the positive y-direction, my legs go thru the screen, to either side, and looking ahead, it's rising in front of me and behind me.

And I'm slouching.

No surprise!

Click on the Earth to see a learning tool from the publisher!

Table 1 Graphs of Quadric Surfaces

Surface	Equation	Surface	Equation
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ All traces are ellipses. If $a = b = c$, the ellipsoid is a sphere.	Cone	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces in the planes $x = k$ and $y = k$ are hyperbolas if $k \neq 0$ but are pairs of lines if $k = 0$.
Elliptic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces are parabolas. The variable raised to the first power indicates the axis of the paraboloid.	Hyperboloid _z of One Sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Horizontal traces are ellipses. Vertical traces are hyperbolas. The axis of symmetry corresponds to the variable whose coefficient is negative.
Hyperbolic Paraboloid y y y	$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ Horizontal traces are hyperbolas. Vertical traces are parabolas. The case where $c < 0$ is illustrated.	Hyperboloid of Two Sheets x y y y y y	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Horizontal traces in $z = k$ are ellipses if $k > c$ or $k < -c$. Vertical traces are hyperbolas. The two minus signs indicate two sheets.

- **1.** (a) What does the equation $y = x^2$ represent as a curve in \mathbb{R}^2 ?
 - (b) What does it represent as a surface in \mathbb{R}^3 ?
 - (c) What does the equation $z = y^2$ represent?
- **2.** (a) Sketch the graph of $y = e^x$ as a curve in \mathbb{R}^2 .
 - (b) Sketch the graph of $y = e^x$ as a surface in \mathbb{R}^3 .
 - (c) Describe and sketch the surface $z = e^y$.

3–8 Describe and sketch the surface.

4.
$$4x^2 + y^2 = 4$$

- **9.** (a) Find and identify the traces of the quadric surface $x^2 + y^2 z^2 = 1$ and explain why the graph looks like the graph of the hyperboloid of one sheet in Table 1.
 - (b) If we change the equation in part (a) to $x^2 y^2 + z^2 = 1$, how is the graph affected?
 - (c) What if we change the equation in part (a) to $x^2 + y^2 + 2y z^2 = 0$?

11-20 Use traces to sketch and identify the surface.

11.
$$x = y^2 + 4z^2$$

13.
$$x^2 = 4y^2 + z^2$$

15.
$$9y^2 + 4z^2 = x^2 + 36$$

13.
$$x^2 = 4y^2 + z^2$$

21-28 Match the equation with its graph (labeled I-VIII). Give reasons for your choice.

21.
$$x^2 + 4y^2 + 9z^2 = 1$$

22.
$$9x^2 + 4y^2 + z^2 = 1$$

23.
$$x^2 - y^2 + z^2 = 1$$

23.
$$x^2 - y^2 + z^2 = 1$$
 24. $-x^2 + y^2 - z^2 = 1$

25.
$$y = 2x^2 + z^2$$

26.
$$y^2 = x^2 + 2z^2$$

27.
$$x^2 + 2z^2 = 1$$

28.
$$y = x^2 - z^2$$

Ι

 Π

 ${\rm III}$

IV

V

VI

VII

VIII

31–38 Reduce the equation to one of the standard forms, classify the surface, and sketch it. $512.6 \pm 51, 2.4, 9, 11, 13, 15, 21-28, 31, 37$

31.
$$y^2 = x^2 + \frac{1}{9}z^2$$

37.
$$x^2 - y^2 + z^2 - 4x - 2z = 0$$