- 1. (10 pts) Find and sketch the domain of $f(x, y) = \frac{\sqrt{x y}}{\ln x}$.
- 2. The following problems involve limits of a function of two variables. The more convincing you are, the more points you will earn.
 - a. (5 pts) Use the fact that $\sqrt{x^2 + y^2} \ge \sqrt{x^2}$ to show that

$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2 + y^2}} = 0.$$

- b. (5 pts) Evaluate $\lim_{(x,y)\to(0,0)} \frac{2x^3 x^2y + 2xy^2 y^3}{x^2 + y^2}$.
- 3. Find the first partials f_x and f_y for f(x, y).

a. (5 pts)
$$f(x, y) = \arcsin(y\sqrt{x})$$

b. (5 pts)
$$f(x, y) = \int_{x}^{y} \sqrt{1 - w^2} dw$$

- 4. (10 pts) Find $\frac{\partial z}{\partial x}$, if $x^2 y^2 z = 3xz$.
- 5. Let $z = x^2 + 2y^2$
 - a. (5 pts) Find an equation of the tangent plane to $f(x, y) = x^2 + 2y^2$ at (1,1,3).
 - b. (5 pts) Let $F(x, y, z) = x^2 + 2y^2 z$, and find an equation of the tangent plane to the level surface F(x, y, z) = 0 at the point (1,1,3).
 - c. (5 pts) Use your answer to the previous problem to approximate f(1.1,1.1).
 - d. (5 pts) Find the *exact* value of f(1.1,1.1), and use it to find the corresponding change in f from (x, y) = (1,1) to (x, y) = (1.1,1.1). That is, find Δz .
 - e. (5 pts) Find the differential dz, and use it to approximate Δz from the previous problem.

Bonus (5 pts) What property of f explains the difference between dz and Δz ?

Bonus (5 pts) Let P be the plane you found in #5a (or #5b). Find parametric equations for a normal line to the plane P that passes through the point $(2, \pi, \sqrt{2\pi})$.

$$\frac{|xy|}{|x|^2 + y^2} - 0 = \frac{|xy|}{|x|^2 + y^2} = \frac{|xy|}{|x|^2} = \frac{|x$$

$$\frac{2x^{2} \times x^{2}y + 2 \times y^{2} + y^{2}}{x^{2} + y^{2}} = \frac{x^{2}(2x - y) + y^{2}(2x - y)}{x^{2} + y^{2}}$$

$$\frac{2x^{2} \times y^{2} + y^{2}}{(2x - y)(x^{2} + y^{2})} = \frac{x^{2}(2x - y) + y^{2}(2x - y)}{(2x - y)(x^{2} + y^{2})}$$

$$= \frac{(2x-y)(x^2+y^2)}{x^2+y^2} = 2x-y \xrightarrow{(x,y)\to \infty} (0,0)$$

. 203 TEST 2 PL II

$$\frac{1}{4}$$

203 Test 2 Pt I

(cd)
$$f(1,1,1) = (1.1)^2 + 2(1.1)^2$$

= $1.21 + 2(1.21) = 3(1.21) = 3.63$

$$0^{\circ} \circ \Delta z = f(1,1,1,1) - f(1,1)$$

$$= 3.63 - \left[1^{2} + 3(1)^{2}\right]$$

. 203 Tot 2 P+ I

Bonus 2

$$2(x-1) + 4(y-1) - (2-3) = 0$$
 $\overline{n} = (2, 4, -1)$ so a fix in that direction containing $(2, \overline{n}, \sqrt{2\pi})$ is given by $x = 2 + 2t$
 $y = \overline{n} + 4t$
 $z = \sqrt{2\pi} - t$