Name_____ NO GRAPHING CALCULATORS!!!

Do all your work and submit answers with your work, on the separate paper provided. Organize your work for efficient grading and feedback. Leave a margin, especially in the top left, where the staple goes!

- 1. (10 pts) Find and graph the domain of $f(x, y) = \sqrt{y-1} + \sqrt{25-x^2}$.
- 2. Find the first partials f_x and f_y for...

a. (10 pts)
$$f(x, y) = (x^2 - 3xy + 5y^{-4})^2$$

b. (10 pts) $f(x, y) = \int_0^{x^2 - 5x} \left(\frac{\sin(\tau)\cosh(\tau)}{\tau^2 + \pi}\right) d\tau$

- 3. Find $\frac{\partial z}{\partial x}$ for the equation $y \sin(xy^3) + x^2 yz^2 = 2xyz$ in 2 ways:
 - a. (5 pts) Use implicit differentiation, holding y constant and treating z as an implicit function of x.
 - b. (5 pts) Form a function F(x, y, z) and find $\frac{\partial z}{\partial x}$ for the level surface F(x, y, z) = 0.
- 4. Let $f(x, y) = 2x^2 + 4y^2 + 10$.
 - a. (10 pts) Find an equation of the tangent plane to f at the point (1,-1, f(1,-1)) = (1,-1,16).
 - b. (10 pts) Use your previous answer to approximate f(1.2, -0.9).
 - c. (5 pts) Find the actual value of f(1.2, -0.9).
 - d. (5 pts) Find Δz for the change in z from f(1,-1)=16 to f(1.2,-0.9)
 - e. (5 pts) Find the differential approximation $dz \approx \Delta z$. You may calculate this, directly, or just use previous work and a subtraction.
 - f. (5 pts) What is the gradient of f at (1,-1,16)?
 - g. (5 pts) Find the directional derivative for f, $D_{\overline{u}}$ in the direction of $\overline{u} = \langle -3, 2 \rangle$ at the point (1,-1,16)

- 5. Find the shortest distance between the plane 2x y + 3z = 6 and the point P(2,3,7) in three ways:
 - a. (5 pts) Use 1^{st} and/or 2^{nd} derivative test.
 - b. (5 pts) Use earlier skills from Chapter 12.
 - c. (5 pts) Use Lagrange Multipliers.

Bonus: Answer up to 3 of the following for up to 15 bonus points.

- 1. (5 pts) (Line segment) Write the equation of the line segment between A(1,2,3) and B(-3,2,1).
- 2. (5 pts) Consider the object $9x^2 + 4z^2 25y = 0$. Show its traces in the planes x = k, y = k, z = k for different choices of k and project those into the yz-, xz-, and xy planes, respectively.
- 3. (5 pts) Give a verbal description of the statement $\kappa = \left| \frac{d\overline{T}}{ds} \right|$. What is it? What does it mean? What's our shortcut for calculating it, in terms of $\overline{r}(t)$?