\qquad

Do all your work and submit answers with your work, on the separate paper provided. Organize your work for efficient grading and feedback. Leave a margin, especially in the top left, where the staple goes!

1. (10 pts) Find and graph the domain of $f(x, y)=\sqrt{y-1}+\sqrt{25-x^{2}}$.
2. Find the first partials f_{x} and f_{y} for...
a. $(10 \mathrm{pts}) f(x, y)=\left(x^{2}-3 x y+5 y^{-4}\right)^{2}$
b. (10 pts) $f(x, y)=\int_{0}^{x^{2}-5 x}\left(\frac{\sin (\tau) \cosh (\tau)}{\tau^{2}+\pi}\right) d \tau$
3. Find $\frac{\partial z}{\partial x}$ for the equation $y \sin \left(x y^{3}\right)+x^{2} y z^{2}=2 x y z$ in 2 ways:
a. (5 pts) Use implicit differentiation, holding y constant and treating z as an implicit function of x.
b. (5 pts) Form a function $F(x, y, z)$ and find $\frac{\partial z}{\partial x}$ for the level surface $F(x, y, z)=0$.
4. Let $f(x, y)=2 x^{2}+4 y^{2}+10$.
a. (10 pts) Find an equation of the tangent plane to f at the point $(1,-1, f(1,-1))=(1,-1,16)$.
b. (10 pts) Use your previous answer to approximate $f(1.2,-0.9)$.
c. (5 pts) Find the actual value of $f(1.2,-0.9)$.
d. (5 pts) Find Δz for the change in z from $f(1,-1)=16$ to $f(1.2,-0.9)$
e. (5 pts) Find the differential approximation $d z \approx \Delta z$. You may calculate this, directly, or just use previous work and a subtraction.
f. (5 pts) What is the gradient of f at $(1,-1,16)$?
g. (5 pts) Find the directional derivative for $f, D_{\bar{u}}$ in the direction of $\bar{u}=\langle-3,2\rangle$ at the point $(1,-1,16)$
5. Find the shortest distance between the plane $2 x-y+3 z=6$ and the point $P(2,3,7)$ in three ways:
a. (5 pts) Use $1^{\text {st }}$ - and/or $2^{\text {nd }}$ - derivative test.
b. (5 pts) Use earlier skills from Chapter 12.
c. (5 pts) Use Lagrange Multipliers.

Bonus: Answer up to 3 of the following for up to 15 bonus points.

1. (5 pts) (Line segment) Write the equation of the line segment between $A(1,2,3)$ and $B(-3,2,1)$.
2. (5 pts) Consider the object $9 x^{2}+4 z^{2}-25 y=0$. Show its traces in the planes $x=k, y=k, z=k$ for different choices of k and project those into the $y z-, x z-$, and $x y$ - planes, respectively.
3. (5 pts) Give a verbal description of the statement $\kappa=\left|\frac{d \bar{T}}{d s}\right|$. What is it? What does it mean? What's our shortcut for calculating it, in terms of $\bar{r}(t)$?
