with(plots)

[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot, display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, shadebetween, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot]

Use a mouse-click to get the cursor on the ?spacecurve line, below, and hit enter.

?spacecurve

The online manual page will come up, and it'll explain use of the command. You could create a Maple document that just had all your "?"s in one document, as a quick-reference on the syntax of any command you used, before.

 $spacecurve([\cos(t), \sin(t), t], t=0...8 \cdot \text{Pi}, numpoints = 500, thickness = 2, color = black)$

You can get by with just the "t=0..8*Pi" argument, and add the other 3, like I did. If you spend a lot of time in Maple Land, you'll pore over the "?plotoptions" pages, a lot, to tweak the displays.

(1)

A "handy" way to customize the display is to right-click and explore all the options that pop up. I think the option is "axes=normal" to do it inside the command, but I think you can just follow your pointer to the various options, starting with a right-click over the image.

Notice that I enclosed the list of 3 functions in square brackets?

 $spacecurve([cos(t), sin(t), t], t = 0..8 \cdot Pi, numpoints = 500, thickness = 2, color = black, axes = "boxed")$

Ahh, *there* was a good guess on the argument to fit the pic inside a box, and display the box. "boxed" is one of the options for the axes in the pop-up menus, so it's pretty good about teaching you how to write the commands, if you're interested in that stuff.

spacecurve($\langle \cos(t), \sin(t), t \rangle$, $t = 0..8 \cdot \text{Pi}$, numpoints = 500, thickness = 2, color = black)

If you look at that last command, above, you see that I changed the delimeters to <> from the square brackets [] that I used in the previous examples. It appears that MAT 203 notation can be followed.

Sorry for the following blather. You may SAFELY SKIP NEXT PARAGRAPH.

I learned with the square brackets, myself, because that was how the early, lisp-based CAS's were set up. Just no fuss with telling it how many places to reserve. As long as the multiplications made sense, it would perform them, flawlessly (Macsyma on a Sun 3/60. State-of-the-art in its day, (mid-'80s) for the common man.)

NOW BACK TO THE EXPOSITION:

 $spacecurve([t \cdot cos(t), sin(t), t], t = 0..8 \cdot Pi, numpoints = 500, thickness = 2, color = black, axes = "boxed")$

