\qquad

Due to lock-downs, this test will be take-home. I'm pleased we did all the other tests in traditional, handwritten fashion, but not this one. I'm still highly confident about the quality of work in this cohort.

1. Consider the two lines L_{1} and $L_{2}: L_{1}: x=2+5 t, y=3-2 t, z=1+t$

$$
L_{2}: x=5-3 s, y=1-s, z=s
$$

(a) (10 pts) Show that L_{1} and L_{2} are skew.
(b) (10 pts) Find the distance between L_{1} and L_{2}. For your final answer, I expect a simplified radical expression.
2. Consider the space curve $\mathbf{r}=\left\langle e^{t} \sin (t), e^{t} \cos (t), \sqrt{2} e^{t}\right\rangle=\left(e^{t} \sin (t)\right) \mathbf{i}+\left(e^{t} \cos (t)\right) \mathbf{j}+\left(\sqrt{2} e^{t}\right) \mathbf{k}$
(a) (10 pts) Find the arc length function for the curve measured from the point $P(0,1, \sqrt{2})$ in the direction of increasing t and then re-paramatrize the curve with respect to arc length s. That is to say, find $t=t(s)$ as a function of s by finding $s=s(t)$ as a function of t, solve for t, and substitute that expression in for t in the expression for $\mathbf{r}(t)=\mathbf{r}(t(s))$.
(b) (10 pts) Use your result in part (a) to find the point on the curve that is 4 units along the curve in the direction of increasing t from the point P. In other words, find $\mathbf{r}(t(4))$!
(c) (10 pts) Find the unit tangent \mathbf{T}, unit normal \mathbf{N}, and unit binormal \mathbf{B} for \mathbf{r}.
3. (10 pts) If $z=x^{2}-x y+3 y^{2}$ and (x, y) changes from $(3,-1)$ to $(2.96,-0.95)$, compare the values of Δz and $d z$.
4. Verify Stokes' Theorem for the vector field $\mathbf{F}(x, y, z)=-2 y z \mathbf{i}+y \mathbf{j}+3 x \mathbf{k}=\langle-2 y z, y, 3 x\rangle$ and the paraboloid $S=\left\{(x, y, z) \mid z=4-x^{2}-y^{2}, 0 \leq z \leq 4\right\}$, oriented upward.
(a) (10 points) ... for the line integral.
(b) (10 points) ... for the surface integral.
5. A fluid has density $\rho=5 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$ and flows with velocity $\mathbf{v}=x \mathbf{i}+y^{2} \mathbf{j}+2 y z \mathbf{k}=\left\langle x, y^{2}, 2 y z\right\rangle$, where x, y and z are measured in meters, and the components of \mathbf{v} in meters per second. Find the rate of (mass) flow (i.e., flux) through the cylinder $S=\left\{(x, y, z) \mid x^{2}+y^{2}=4,0 \leq z \leq 1\right\}$ in two different ways:
(a) (10 pts) Compute the double integral of the normal component of the velocity field over S :

$$
\iint_{S} \rho \mathbf{v} \cdot d \mathbf{S}=\rho \iint_{S} \mathbf{v} \cdot d \mathbf{S}
$$

(b) (10 pts) Use the Divergence Theorem.

