203 S 14,8 ts $3,3,6,10,13,14,27,28,41,45,46$

$$
1,3,6,10,25,27,45 \text { looks bitten. }
$$

Worked w/ raphisy calculator.
(1) $g(x, y)=8$ \& contous map of $f(x, y)$ are Shown. Estimate max \& mic.

(2) Graph $x^{2}+y^{2}=1 \quad$ \& $x^{2}+y=c$ (ie. $y=c-x^{2}$ )

Find 2 curves that just touch the circle
Clearly $y=1-x^{2}$ is one.
$y=\sqrt{1-x^{2}}=\left(1-x^{2}\right)^{\frac{1}{2}}$
$4_{2}^{\prime}=-2 x$
$602^{2} \times\left(1-2 \sqrt{1-x^{2}}\right)=0$
$x=0$ OR
My dea was to
find $x \geqslant \sqrt{1-x^{2}} a$
Then fid $C \Rightarrow$ they
touched theses.
Not sue why
otis not wonkiz.
$2 \sqrt{1-x^{2}}-1=0$
$1\left(1-x^{2}\right)=1$
$4-4 x^{2}-1=0$
$-4 x^{2}+3=0$
$x= \pm \frac{\sqrt{3}}{2}$
$\left(\frac{\sqrt{3}}{2}\right)=c-\frac{3}{4}=\frac{1}{2} \Rightarrow$
$c=\frac{5}{4}$
$203 \delta^{4} 14,8 \# 52,3,6,10,13,14,27,29,41,45,46$
*2entid

$$
\begin{aligned}
& y_{1}=\sqrt{1-x^{2}}=\operatorname{top} \frac{1}{2} \text { of cucl } x^{2}+y^{2}=1 \\
& y_{1}=\left(1-x^{2}\right)^{\frac{1}{2}} \Rightarrow y_{1}^{\prime}=\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}}(-2 x)=\frac{-x}{\sqrt{1-x^{2}}} \\
& y_{2}=c-x^{2} \Rightarrow y_{2}^{\prime}=-2 x
\end{aligned}
$$

$$
\text { set }-2 x=\frac{-x}{\sqrt{1-x^{2}}} \Longrightarrow
$$

$$
\frac{x}{\sqrt{1-x^{2}}}-\frac{2 x}{1} \cdot \frac{\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}}=\frac{x\left(1-2 \sqrt{1-x^{2}}\right)}{L C D}=0 \Rightarrow
$$

$$
\begin{aligned}
& 2 \sqrt{1-x^{2}}-1=0 \longrightarrow 4-4 x^{2}=1 \Longrightarrow-4 x^{2}=-3 \\
& 2 \sqrt{1-x^{2}}=1 \longrightarrow \frac{\sqrt{3}}{2} \text { SAME. }
\end{aligned}
$$

$$
2 \sqrt{1-x^{2}}-1=0 \longrightarrow
$$

$$
\begin{aligned}
& 2 \sqrt{1-x^{2}}=1 \rightarrow x= \pm \frac{\sqrt{3}}{2} \text { SAME. } \\
& \Rightarrow x^{2}=\frac{3}{4} \Rightarrow x= \pm
\end{aligned}
$$

want $a-x^{2}=\sqrt{1-x^{2}} @ x= \pm \frac{\sqrt{2}}{2} \longrightarrow$

$$
\begin{aligned}
& c-x^{2}=\sqrt{1-x} \\
& c-\frac{3}{4}=\sqrt{1-\frac{3}{4}}=\sqrt{\frac{1}{4}}=\frac{1}{2} \Rightarrow \\
& c=\frac{3}{4}+\frac{1}{2}=\frac{3+2}{4}=\frac{5}{4} . \text { Same as before. }
\end{aligned}
$$

so

$$
\begin{aligned}
& \text { so } y_{2}=4 \\
& y_{2}^{\prime}=-2 x \\
& y_{2}^{\prime}\left(\frac{\sqrt{3}}{2}\right)=-\sqrt{3} \\
& y_{1}^{\prime}\left(\frac{\sqrt{3}}{2}\right)=\frac{-\frac{\sqrt{3}}{2}}{\sqrt{1-\frac{\sqrt[3]{4}}{4}}}=\frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}}=-\sqrt{3} \\
& \text { ok. I }+ \text { checks. } \\
& y_{1}\left(\frac{\sqrt{3}}{2}\right)=\frac{1}{2} \\
& y_{2}\left(\frac{\sqrt{3}}{2}\right)=\frac{5}{4}-\frac{3}{4}=\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

203 S14, 9 \# $52,3,6,10,13,14,27,29,41,45,46$
\# 2 entd
(b) maximizelmiininzz $f(x, y)=x^{2}+y$, s.t.

$$
\begin{aligned}
& x^{2}+y^{2}=1 \quad g(x, y)=x^{2}+y^{2} \\
& f_{x}=2 x=\lambda 2 x \Rightarrow x(2-2 \lambda)=0 \\
& f_{y}=1=2 \lambda y \longrightarrow y_{y}=\frac{1}{2 \lambda}
\end{aligned}
$$

$\Rightarrow x=0$ OR $\lambda=1$

$$
\begin{aligned}
& \Rightarrow x=0 \text { OR } \lambda=1 \\
& \lambda=1 \Rightarrow y=\frac{1}{2} \cdot y=\frac{1}{2} \Rightarrow x^{2}+\frac{1}{4}=1=\frac{5}{4} @\left( \pm \frac{\sqrt{3}}{2}, \frac{1}{2}\right) \\
& = \pm \frac{\sqrt{3}}{2} \quad \text { Max of } 1 @(0,1) .
\end{aligned}
$$

$$
\begin{aligned}
& y= \pm \\
& x= \pm \frac{\sqrt{3}}{2} \quad \text { Max of } 1 @(0, i) .
\end{aligned}
$$

Answies to $a$ \& $b$ are the same, basically.
*s 3-17 Use Lagrange multipliess to fird max \& mis values
(3)
(3) $f(x, y)=x^{2}+y^{2} \quad$; $x y=1$

$$
\begin{aligned}
& f_{x}=2 x \stackrel{\text { SE }}{=} \lambda y \Rightarrow x=\frac{\lambda y}{2} \text { or } \lambda=\frac{2 x}{y} \\
& f_{y}=2 y=\lambda x \rightarrow 2 y=\lambda\left(\frac{\lambda y}{2}\right)=\frac{\lambda^{2}}{2} y \\
& 2 y-\frac{\lambda^{2}}{2} y=y\left(2-\frac{\lambda^{2}}{2}\right)=0 \rightarrow \\
& \begin{array}{l}
\lambda^{2}-4=0 \Rightarrow \lambda= \pm 2 \quad \text { ALSO } x=\frac{1}{y} \\
2 x= \pm 2 y \Rightarrow x= \pm y \quad l
\end{array} \\
& \begin{aligned}
2 y & \pm 2 x \quad \frac{1}{y}= \pm y \Rightarrow \quad y^{2}-1=0 \\
& \pm y-\frac{1}{y}= \pm y^{2}-1 \Rightarrow
\end{aligned} \\
& 0= \pm 4-\frac{1}{y}= \pm 4- \pm 1 \\
& \begin{array}{l}
y= \pm 1, \sqrt{=} x= \pm 1 \\
(1,1),(1,-1),(-1,-(-),
\end{array}
\end{aligned}
$$

203 S 14,8 S $3,6,10,13,4,27,29,41,45,46$
\#3 ant id

$$
\begin{aligned}
& f( \pm 1,1)=2 \text { max } \\
& f( \pm 1,-1)=0 \quad \min
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6) } f(x, y)=e^{x y} \text { st } x^{3}+y^{3}=16 \\
& f_{x}=y e^{x y}, f_{y}=x e^{x y} \quad g_{x}=3 x^{2} \\
& f_{x}=x g_{x} \rightarrow y e^{x y}=3 \lambda x^{2} \\
& f_{y}=\lambda g_{y} \rightarrow x e^{x y}=3 \lambda y^{2} \\
& (y-x) e^{x y}=\left(x^{2}-y^{2}\right)(3 \lambda) \\
& -e^{x y}=3 \lambda(x-y) \\
& f_{x}=x y e^{x y}=3 \lambda y x^{2} \\
& -x f_{y}=-x y e^{x y}=-3 \lambda x y^{2} \\
& 3 \lambda x^{2} y-3 x x y^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6) } f(x, y)=e \text { st } x^{3}+y^{3}=16 \\
& f_{x}=y e^{x y}, f_{y}=x e^{x y} \quad g_{x}=2 x^{2}, g_{y}=3 y^{2}
\end{aligned}
$$

Soling thus analysticily isp 't easy,
$3 \lambda x y(x-y)=0 \longrightarrow$ Along the line $x=y$

$$
x=0, y=0, \frac{\sigma R}{2} x=y
$$ be, the planes $e^{x^{2}}$ sit. $2 x^{3}=16$

$$
\begin{aligned}
& x=0, y \\
& x=0 ; \quad f(0, y)=e^{0}=1 \\
& 0,
\end{aligned}
$$

$$
\begin{aligned}
x=0: f(0, y) & = \\
y=0: f(x, 0) & =e^{0}=1 \\
x y & =e^{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& y=0: f(x, 0)=e^{x^{2}} \\
& x=y ? e^{x y}=
\end{aligned}
$$

$$
e^{x y}=e^{4} \approx 54.9015003
$$

203 T14,8 $\mid=56,10,13,14,27,29,41,45,46$
10

$$
\begin{aligned}
& f(x, y, z)=x^{2} y^{2} z^{2}, \quad x^{2}+y^{2}+z^{2}=1 \\
& f_{x}=2 x y^{2} z^{2}, f_{y}=2 x^{2} y z^{2}, f_{z}=2 x^{2} y^{2} z \\
& f_{x}=2 x y^{2} z^{2}=2 \lambda x=\lambda g_{x} \\
& f_{y}=2 x^{2} y z^{2}=2 x y=\lambda y y \\
& f_{z}=2 x^{2} y^{2} z=2 x z \\
& x f_{x}=y f_{y}=z f_{z}=2 \lambda x^{2}=2 \lambda y^{2}=2 \lambda z^{2} \\
& \text { So } x^{2}=y^{2}=z^{2} \\
& \text {... } x=-y=z \\
& \begin{array}{l}
\bar{r}_{1}=\langle x, x, x\rangle t=\bar{u}_{1} t \\
t=\bar{u}_{2} t
\end{array} \\
& \left.\bar{r}_{2}=\langle x,-x, x\rangle t=-x\right\rangle t=u_{3} t \\
& \left.\bar{r}_{3}=\left\langle x_{1}-x,-x\right\rangle,-x\right\rangle t=\bar{u}_{4} t \\
& ?_{4}=2 x, x,-x \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& x=t, y=t, z=t \\
& y=-t, z=t
\end{aligned}
$$

- Also nied

$$
\begin{aligned}
& x=t, y=-t, z=t \\
& x^{2}+y^{2}+z^{2}=1 \\
& x=t, y=-t, z=-t \\
& 3 x^{2}=1 \\
& x=t_{1} y=t_{1} x=-t \\
& \therefore 7 \quad x^{2}=\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sqrt{3}}{3} 2,1,17 \\
& \begin{array}{l}
\frac{\sqrt{3}}{3}\langle 1,-1\rangle \\
\frac{\sqrt{3}}{3}\langle 1,-1\rangle
\end{array}
\end{aligned}
$$

203 SI4, 3 F $13,14,27,29,41,45,40$
(13)

$$
\begin{aligned}
& f(x, y, z, t)=x+y+z+t ; x^{2}+y^{2}+z^{2}+t^{2}=1 \\
& f_{x}=1=2 \lambda x \\
& f_{y}=1=2 \lambda y \quad x=y=z=t \\
& \begin{aligned}
& f_{z}=1=2 \lambda z \quad \rightarrow x= \pm \frac{1}{2}=y, z, t \\
& f_{t}=1=2 \lambda t \\
& f\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)=-2 \\
& f\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)=-\frac{3}{2}=f\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)=f\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right) \\
& f\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)=0=f\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)=f\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right) \\
&=f\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)=f\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right) \\
& f\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=+\frac{1}{2}=f\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=f\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right) \\
&=f\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right) \\
& \text { MAX }
\end{aligned} \\
& \begin{aligned}
f\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) & =2
\end{aligned}
\end{aligned}
$$

(14) $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{k=1}^{n} x_{k}$ s.t. $\sum_{k=1}^{n} x_{k}^{2}=1$

$$
\begin{aligned}
& \text { of } \\
& n x_{1}^{2}=1 \Rightarrow x= \pm \frac{\sqrt{n}}{n} \\
&
\end{aligned}
$$

$$
\frac{5}{n} \text { a } \bar{x}=\left(\frac{\sqrt{n}}{n}, \frac{\sqrt{n}}{n}, m \frac{\sqrt{n}}{n}\right)
$$

$$
\begin{aligned}
& n x_{1}=\sum_{k=1}^{n} \frac{\sqrt{n}}{n}=\sqrt{n} \text { of } \\
& \text { nax } \\
& \text { nin of }-\sum_{k=1}^{n} \frac{\sqrt{n}}{n}=-\sqrt{n}\left(-\frac{\sqrt{n}}{n},-\frac{\sqrt{n}}{n}, m \frac{\sqrt{n}}{n}\right)
\end{aligned}
$$

$2038^{1} 14,8$ \# $27,29,41,45,46$
\# 5 27-39 Use Lagiange multip piens to solve 14.7 Hos
(27) 14.7*39 Fand distance fiom $(2,1,-1)$ to

$$
\begin{aligned}
& x+y-z=1 \Rightarrow z=x+y-1 \quad g(x, y)=x+y-1 \\
& d=\sqrt{(x-2)^{2}+(y-1)^{2}+(x+y-1+1)^{2}} \\
& f(x+y)=(x-2)^{2}+(y-1)^{2}+(x-y)^{2}+2 x-2 y=4 x-2 y-y=\lambda
\end{aligned}
$$

$$
\begin{aligned}
& f_{4}=2(y-1)-2(x-y)=\lambda \\
& {\left[\begin{array}{cc|}
4-2 & \lambda+4 \\
-2 & 4 \\
-2+2
\end{array}\right] \sim\left[\begin{array}{cc}
1 & -2 \\
2 & -1
\end{array} \left\lvert\,-\frac{1}{-\frac{1}{2} \lambda-1} \begin{array}{c}
-2
\end{array}\right.\right] \begin{array}{c}
\lambda+2 \\
-\frac{1}{2} \lambda-2
\end{array}} \\
& {\left[\begin{array}{cc|c}
1 & -2 & -\frac{1}{2} \lambda-1 \\
0 & 3 & \frac{1}{2} \lambda
\end{array}\right]} \\
& x-2\left(\frac{1}{6} \lambda\right)=-\frac{1}{2} \lambda-x \\
& \begin{array}{l}
x-\frac{1}{3} \lambda=-\frac{1}{2} x-y \\
\end{array} \\
& \begin{array}{c}
6 x-2 \lambda=-3 \lambda \\
6 x=-\lambda-6
\end{array} \\
& 3 y=\frac{1}{2} x
\end{aligned}
$$

$$
\begin{aligned}
& y=-x-1
\end{aligned}
$$

$203 \leqslant M, 8 * 527,29,41,45,46$
\# 27 CHECK BY FORMULA

$$
\frac{|(1)(2)+(1)(1)+(-1)(-1)-1|}{\sqrt{3}}=\frac{3}{\sqrt{3}}=\sqrt{3}
$$

$$
\begin{aligned}
& \bar{u}=\overrightarrow{A B}=\langle 1,1,-1\rangle \\
& \left|\operatorname{com}_{\bar{n}} \bar{u}\right|=\frac{|\langle 1,1,-1\rangle \cdot\langle 1,1,-1\rangle|}{\sqrt{3}}=\frac{3}{\sqrt{3}}=\sqrt{2} \\
& \text { hers far } l, d .
\end{aligned}
$$

Lagrange Multiples fail lect.

$$
f=(x-2)^{2}+(y-1)^{2}+(z+1)^{2}
$$

$f_{x} g=x+y-z$ SET $\lambda$
$=2 x$ A $\lambda$

$$
\begin{array}{r}
2 x-x=4 \\
24-x=2 \\
24=
\end{array}
$$

$$
\begin{aligned}
& 2 x-x=2 \\
& 24-x=2
\end{aligned}
$$

$$
\begin{aligned}
f_{x}=2(x-2) & =2 x y \\
& =2(y-1)=2 y-2 \text { ser }
\end{aligned}
$$

$$
\begin{aligned}
& f_{y}=2(y-1)=2(x+1)=2+2 \\
& f_{z}=2()_{2}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{1}{2} x+2 \\
& y=1 / 2 x-2 \\
& x=-\frac{1}{2} x
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{x-2}=x^{\prime \prime}+7^{\prime} x^{-}-x^{\prime \prime}=\lambda^{2}{ }^{2} \\
& x^{-} x^{\prime \prime} \text {, ऊт } T^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
d= & \sqrt{(x-2)^{2}+(y-1)^{2}+(z+1)^{2}} \quad \\
& x+y=-z=x+y
\end{aligned} \quad=g(x, y) . \\
& \begin{array}{l}
\text { min }=(x-2)^{x}+(y-1)^{2}+(z+1)^{2}+(x+y)
\end{array}
\end{aligned}
$$

$203 \delta^{\prime} 14,8$ H5 $27,29,41,45,46$
\#27 micl

$$
\begin{aligned}
& \lambda=-\frac{0}{3} \Rightarrow x=\frac{1}{2}\left(-\frac{6}{3}\right)+2=-\frac{4+6}{3}=\frac{2}{3}=x \\
& d=\frac{1}{2}\left(-\frac{8}{3}\right)+1=-\frac{4+3}{3}=\frac{1}{3}=4 \\
& \varepsilon z=-\frac{1}{2}\left(-\frac{8}{3}\right)-2=\frac{-4-6}{3}=\frac{-2}{3}=z \\
& \Rightarrow \sqrt{(x-2)^{2}+(y-1)^{2}+(z+1)^{2}} \\
&= \sqrt{\left(\frac{2}{3}-2\right)^{2}+\left(\frac{1}{3}-1\right)^{2}+\left(-\frac{2}{3}+1\right)^{2}} \\
&= \sqrt{\left.\left(\frac{2-6}{3}\right)^{2}+\left(-\frac{2}{3}\right)^{2}+\frac{1}{3}\right)^{2}} \\
&=\sqrt{\left(\frac{4}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2}}=\frac{16+4+4}{9^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{\left(\frac{1}{3}\right)} \quad=\frac{\sqrt{2}}{3} N o p e \\
& =\sqrt{\frac{21}{3^{2}}} \quad=\frac{1}{3}+\frac{1}{2} \lambda-2
\end{aligned}
$$

Found a mistave $z=\frac{-\frac{1}{2} 7}{1} \prod_{\text {mised ather }}$ Fiyed. still wrong

SI4. 8 \#27's Kickic) my butt?
Distance from $(2,1,-1)$ to $x+y-z=1$
$d^{2}=$ square of distance from $B$ to $D$

$$
\begin{aligned}
& =f(x, y, z)=(x-2)^{2}+(y-1)^{2}+(z+1)^{2} \\
& f_{x}=2(x-2)=2 x-4=\lambda \Rightarrow 2 x-\lambda=4 \\
& f_{y}=2(y-1)=2 y-2=\lambda \Rightarrow 2 y-\lambda=2 \\
& f_{z}=2(z+1)=-\lambda \quad 2 z+2=-\lambda \\
& x=\frac{\lambda+4}{2}, y=\frac{\lambda+2}{2}, z=\frac{-\lambda-2}{2} \\
& x+y-z=\frac{\lambda+4}{2}+\frac{\lambda+2}{2}-\frac{-\lambda-2}{2}=1 \\
& \Rightarrow \lambda+4+\lambda+2+\lambda+2=2 \\
& \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow+4+\lambda+2+\lambda+2 \\
& \Rightarrow 3 x+8=2-\lambda, \lambda
\end{aligned}
$$

$$
\begin{aligned}
& 3 x=-6 \quad-\frac{2+2}{2}=0, z=\frac{2-2}{2}=0 \\
& x=\frac{-2+4}{2}=1, y=\frac{2}{2}-\frac{1}{2} \\
& \Rightarrow d=\frac{\sqrt{(1-2)^{2}+(0-1)}}{\sqrt{1^{2}+1^{2}+1^{2}}}=\sqrt{3} \text { Finauy }
\end{aligned}
$$

203 S 14,8 \# $29,41,45,46$
(29) S4 My, Find points on the cone $z^{2}=x^{2}+y^{2}$ that are closest to the origin. Minimze $\sqrt{x^{2}+y^{2}+z^{2}}$ s.t.

$$
x^{2}+y^{2}-z^{2}=0
$$

Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$

$$
\begin{aligned}
& f(x, y, z)=x \\
& g(x, y, z)=x^{2}+y^{2}-z^{2}
\end{aligned}
$$

Then $f_{x}=2 x=2 x x$

$$
\begin{aligned}
& f_{y}=2 y=2 x y \\
& f_{z}=2 z=2 x z \\
& (2 x-2) z=0 \\
& (2 x-2) y=0 \\
& (2 x-2) z=0
\end{aligned}
$$

$\lambda=1 \rightarrow$ TAuT OLOGy from $f_{x 2}=\lambda g_{x}$

$$
z= \pm \sqrt{x^{2}+y^{2}}
$$


minimum dustruce
ア@ong © I think.
Just from visual

$$
z^{2}=x^{2}+y^{2}
$$

$203 S^{\prime} 14.8$ \#SQ2,45.46
(41) The plame $x+y+2 z=2$ in tessects the panaboloid $z=x^{2}+y^{2}$ in an ellipses Find the poirts on turs ellipse thut ane nemest \&f faithest frow the orig is.

$$
\begin{aligned}
& d=\sqrt{x^{2}+y^{2}+z^{2}} \\
& f=x^{2}+y^{2}+z^{2} \quad \text { s.t. } \quad x+y+2 z=2 \\
& f_{x}=2 x=\lambda \quad x=\frac{\lambda}{2}=y \quad ;(x, y, z)=x+y+2 z \\
& f_{y}=2 y=\lambda \quad z=\lambda=2 x \\
& f_{z}=2 z=2 \lambda \quad(x, x, 2 x) \\
& \text { Non } x+x+2(2 x)=2 \\
& 6 x=2 \Rightarrow \\
& x=\frac{1}{3}=y, z=\frac{2}{3}
\end{aligned}
$$

Watir aconshaints

$$
\begin{aligned}
h(x, y, z) & =x^{2}+y^{2}-z \\
f_{x}=2 x & =\lambda+2 \mu x \\
f_{y}=2 y & =\lambda+2 \mu y \\
f_{z}=2 z & =2 \lambda-2 \mu z \\
(2-2 \mu) x & =\lambda\} x=y \\
(2-2 \mu) y & =\lambda \\
(2+2 \mu) z & =2 \lambda \\
\lambda & =(1+\mu) z
\end{aligned}
$$

$203 \leqslant 14,8$ \#5 41, 45,46
$4 m_{n}+d$

$$
(1+\mu) z=(2-2 \mu) x
$$

Not seeng haw to selle this w/o tectmology to colve the simultaneous egins

45

203 S 14.8 \#545,46
(45) Find max of $\sqrt[n]{\prod_{k=1}^{n} y_{k}}$
giver $x_{2}>0 \quad \forall k=1, \ldots, n$
and $\sum_{k=1}^{n} x_{12}=C \in \mathbb{R} \quad g(\bar{x})=\sum_{k=0}^{n} x_{k}$
$\sqrt[n]{*}$ is wereasīs. Minìize it by miimiziog $f^{n}(\bar{x})=\prod_{k=1}^{n} x_{k}$

$$
\begin{aligned}
f_{x_{1}} & =\prod_{\substack{k=1 \\
k \neq 1}}^{n} x_{k}=\lambda \\
\vdots & \prod_{i=1}^{n} x_{k}=\lambda \\
f_{i} & =\prod_{\substack{k \\
k \neq i}}^{n}=2
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow x_{2}=C=x_{2}+\lambda \\
& =\frac{c}{2}
\end{aligned}
$$

Now, Nasonies benthis patters.

$$
\begin{aligned}
& x_{2}=c=\frac{c}{2} \\
& x_{1}=x_{2}=
\end{aligned}
$$

$$
\begin{aligned}
& \frac{c}{n}=m^{n}=\frac{c}{c} \\
& \sum_{x}=x_{k}=n+1
\end{aligned}
$$

H45 cnt'd
Where $f(\bar{x})$ is max, we have $\sqrt[n]{\prod_{k=1}^{n} x_{k}}=\frac{c}{\sqrt[n]{n}}$ and at that point,
we have $\frac{\sum x_{k}}{n}=\frac{\sum \frac{c}{\sqrt[n]{n}}}{n}=\frac{c}{\sqrt{n}}$ and they are equal.
otherwise, $\sqrt[n]{\prod_{t=1}^{n} x_{k}} \leq \frac{c}{\sqrt[n]{n}}$
and so $\frac{\sum \times k}{n}=\frac{c}{n} \geq c$

$$
\begin{aligned}
& \text { Not quite. } \\
& f_{x_{1}}=x_{2} x_{3}=\lambda \\
& f_{x_{2}}=x_{1} x_{3}=\lambda \longrightarrow x_{3}=\frac{\lambda}{x_{2}} \\
& f_{x_{3}}=x_{1} x_{2}=\lambda \\
& \text { so } \frac{\lambda}{x_{2}}=\lambda \quad x_{1} \lambda=x_{2} \lambda \\
& 3 x_{k}=c \\
& x_{k}=\frac{c}{n}
\end{aligned}
$$

$$
\begin{aligned}
& 2=x_{1} x_{3}=\lambda=\lambda \\
& x_{3}=x_{1} x_{2}=\lambda x_{k}=c \Rightarrow \begin{array}{l}
3 x_{k}=c \\
x_{k}=\frac{c}{n}
\end{array} \\
& \sqrt[n]{\frac{c^{n}}{n^{n}}=\frac{c}{n}=w_{n} \text { we wan }} \begin{array}{l}
\frac{\sum x_{k}}{n}=\frac{c}{n} \text { and } \sqrt{\frac{n}{1} x_{k}} \leq \frac{c}{n}=
\end{array}
\end{aligned}
$$

Now $\frac{\sum x_{k}}{n}=\frac{c}{n}$ and yet, Steeve.

203 SM. 8 \#S 45,46
45

$$
\begin{aligned}
& f_{x_{1}}=x_{2} x_{3} x_{4}=\lambda \\
& f_{x_{2}}=x_{1} x_{3} x_{4}=\lambda \\
& f_{x_{3}}=x_{1} x_{2} x_{4}=\lambda \\
& f_{x_{4}}=x_{1} x_{2} x_{3}=\lambda
\end{aligned}
$$

From this putterm, we DO qet

$$
x_{1}=x_{2}=\cdots=x_{n}
$$

How do we know this is a maximben S.t. consthant $\sum x_{k}=c$ ?

All we know 3 that we forned where the partinls of constraist and clataree are paralle.
(46) (a) Maxmize \& $x_{i} y_{i}$ s,t. \& $x_{i}{ }^{2}=1$ and $\sum y_{k}{ }^{2}=1 \quad g=\sum y_{k}{ }^{2} \quad h=\sum y_{k}{ }^{2}$

$$
\begin{aligned}
& f_{x_{1}}=2 \lambda x_{1}+\mu \cdot 0= \\
& f_{x_{1}}=y_{1}=2 \lambda x_{1}+\mu \cdot 0 \\
& f_{x_{2}}=y_{2}=2 \lambda x_{2} \\
& \vdots \\
& f_{x_{n}}=y_{n}=2 \lambda x_{n}
\end{aligned}
$$

$$
x_{1}=2 \mu 41 \text { sane } 2 y^{2} y_{y}
$$

$\begin{aligned} \text { Then } \sum x_{i} y_{i}=\sum x_{i}\left(2 \lambda x_{i}\right) & =\sum 2 \lambda \\ & =2 \lambda\end{aligned}$
Alternutely $\delta x_{i} y_{i}=2 \mu$

203 514,8 \#46
add the un $n$-sphere.

No, $\sum x_{i}^{2}=1$ mans Vent. You'se on the bound ny of a unit $n$ belles is $\mathbb{R} T$ So dies $\sum y_{i}^{2}=1$.
Question is, how many variables ore we dealing with, exactly? $2 n$ ?

$$
\begin{aligned}
& x_{k}, k=1, \ldots, n \\
& y_{k}, k=1, m, n \\
& x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} \\
& \sum x_{k} y_{k}=\sum x_{k}\left(2 x x_{k}\right)=2 \lambda \sum x_{k}^{2}=2 \lambda \\
& x_{1}=2 \mu y_{1}=2 \mu\left(2 \lambda x_{1}\right)=4 \mu \lambda x_{1} \quad 4 \lambda \mu=1 \\
& x_{2}=4 \mu \lambda \quad \mu=\frac{1}{4 \lambda} \\
& y_{1}=2 \lambda x_{1} \\
& y_{1}=2 x\left(2 \mu y_{1}\right) \\
& \text { ? } x_{i} n=4 \mu \lambda \\
& \lambda=\frac{1}{4 \mu} \\
& = \\
& x_{1}=x_{2}=\ldots x_{n}
\end{aligned}
$$

Wait. We jus meed to find $x$ or $\mu$

$$
\begin{aligned}
& x_{k}=2 \mu y_{k} \\
& \sum x_{k} y_{k}=\sum 2 \mu y_{k} y_{k}=2 \mu \\
& 2 \mu=2 \lambda \\
& \mu=x \\
& \mu-x=0 \\
& \mu-\left(\frac{1}{4 \mu}\right)=\frac{4 \mu-1}{4 \mu}=0 \Longrightarrow \frac{1}{4\left(\frac{1}{4}\right)}=1
\end{aligned}
$$

$$
\text { set } f_{y k}=\lambda g_{y k}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial x_{k}}\left[\sum_{k=1}^{n} x_{k} y_{k}\right]=u_{k}=f_{x_{k}} \\
& \frac{\partial}{\partial x_{12}}\left[\sum x_{k}{ }^{2}\right]=2 x_{k} \\
& \frac{\partial}{\partial y_{k}}\left[\delta y_{k}^{2}\right]=2 y_{k} \\
& \text { Set } f_{x_{k}}=\lambda_{g_{k}}+\mu h_{k} \\
& \Rightarrow y_{k}=2 \lambda x_{k} \\
& 1=\sum 4 k^{2}=\sum\left(\lambda \lambda x_{k}\right)^{2} \\
& =4 \lambda^{2} 己 x_{12}^{2}=4 \lambda^{2} \\
& =1 \Rightarrow \lambda^{3}=\frac{1}{4} \Longrightarrow \\
& \lambda= \pm \frac{1}{2} \\
& \lambda=\frac{1}{2} \Longrightarrow \mu=\frac{1}{4\left(\frac{1}{2}\right)}=\frac{1}{2}
\end{aligned}
$$

203 S"r4.8 \#46 done properly
(46) Maximize $\sum_{i=1}^{n} x_{i} y_{i}$ sot. $\sum x_{i}^{2}=\sum y_{i}^{2}=1$
(b) Prove Caucty - Schwarz
(1) $F_{x_{k}}=4_{k}=2 \lambda x_{k}, k=1$, m.n $^{n}$
(2) $f_{y_{k}}=x_{14}=2 ; 1 y \mathrm{k}, k=1, \mathrm{~m}, n$

By (1), $\sum y_{k}^{2}=\sum\left(2 \lambda x_{k}\right)^{2}=4 \lambda^{2} \sum x_{k}^{2}=4 \lambda^{2}=1$

$$
\Rightarrow \lambda^{2}=\frac{1}{4} \Longrightarrow \lambda= \pm \frac{1}{2}
$$

$\Rightarrow y_{k}= \pm x_{k}, k=1, \ldots, n$, from $\eta_{k}=2\left( \pm \frac{1}{2}\right) x_{k}= \pm x_{k}$
L. Kewise, we obtan $\mu= \pm \frac{1}{2}$ by symmeting of angumant. and if $y_{k}=-x_{k} \forall k, \cdots \sum x_{k}\left(-x_{k}\right)$ $=-\sum x_{k}^{2}=-1$. These gre max ol mi values for $f\left(x_{1}, x_{2}, m, x_{n}, y_{1}, \ldots, y_{n}\right)$ Otherwise, some areositive f some are megatre al you get some thirs be tween -|a|t?
(b) We shom that $\sum_{a} a_{i} b_{i} \leq \sqrt{2 a_{i}^{2} \sqrt{2 b_{i}^{2}}}$

$203 \quad 514.8 \# 46$
ante
Then $\sum x_{i} y_{i}$ satisfies $\sum x_{i}^{2}=1, \sum y_{i}^{2}=1$

$$
\begin{aligned}
& \Longrightarrow \sum x_{i} y_{i} \leq 1 \Longrightarrow \\
& \sum \frac{a_{i}}{\sqrt{\sum a_{k}^{2}}} \cdot \frac{b_{i}}{\sqrt{\sum b_{k}^{2}} \leq 1} \\
& \sum a_{i} b_{i} \leq \sqrt{\sum a_{k}^{2}} \sqrt{\sum b_{k}^{2}}
\end{aligned}
$$

The is huge in analysis for proving nasty in tegrals converge.

Sometimes $\left.\int \sqrt{f^{2}} \exists\right] \sqrt{g^{2}} \exists$
When you's not sure about

This result from $\int$ as the limit of higher This result from $\int_{\text {from }}$ as the him higher
directly for hi re $\sum$ Nosily ar s

