1-2 Determine whether the points P and Q lie on the given surface.

1.
$$\mathbf{r}(u, v) = \langle 2u + 3v, 1 + 5u - v, 2 + u + v \rangle$$

 $P(7, 10, 4), \ Q(5, 22, 5)$

3-6 Identify the surface with the given vector equation.

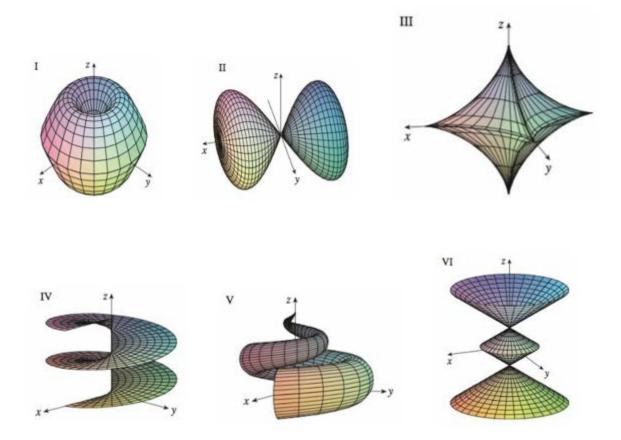
3.
$$\mathbf{r}(u, v) = (u + v)\mathbf{i} + (3 - v)\mathbf{j} + (1 + 4u + 5v)\mathbf{k}$$

5.
$$\mathbf{r}(s,t) = \langle s, t, t^2 - s^2 \rangle$$

13-18 Match the equations with the graphs labeled I-VI and give reasons for your answers. Determine which families of grid curves have u constant and which have v constant.

13.
$$\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + v \mathbf{k}$$

14.
$$\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + \sin u \mathbf{k}, \quad -\pi \le u \le \pi$$


15.
$$\mathbf{r}(u, v) = \sin v \, \mathbf{i} + \cos u \sin 2v \, \mathbf{j} + \sin u \sin 2v \, \mathbf{k}$$

16.
$$x = (1 - u)(3 + \cos v) \cos 4\pi u$$
,
 $y = (1 - u)(3 + \cos v) \sin 4\pi u$,
 $z = 3u + (1 - u) \sin v$

MAT 203 Section 16.6 Exercises Page 2

17. $x = \cos^3 u \cos^3 v$, $y = \sin^3 u \cos^3 v$, $z = \sin^3 v$

18.
$$x = (1 - |u|)\cos v$$
, $y = (1 - |u|)\sin v$, $z = u$

23. The part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the cone $z = \sqrt{x^2 + y^2}$

- **29.** Find parametric equations for the surface obtained by rotating the curve $y = e^{-x}$, $0 \le x \le 3$, about the x-axis and use them to graph the surface.
- 33-36 Find an equation of the tangent plane to the given parametric surface at the specified point. If you have software that graphs parametric surfaces, use a computer to graph the surface and the tangent plane.

33.
$$x = u + v$$
, $y = 3u^2$, $z = u - v$; (2, 3, 0)

- **39.** The surface $z = \frac{2}{3}(x^{3/2} + y^{3/2}), \ 0 \le x \le 1, \ 0 \le y \le 1$
- 47. The surface with parametric equations $x = u^2$, y = uv, $z = \frac{1}{2}v^2$, $0 \le u \le 1$, $0 \le v \le 2$