1-8 Find (a) the curl and (b) the divergence of the vector field.

 $\mathbf{I} \cdot \mathbf{F}(x, y, z) = xyz \, \mathbf{i} - x^2 y \, \mathbf{k}$

3.
$$\mathbf{F}(x, y, z) = \mathbf{i} + (x + yz)\mathbf{j} + (xy - \sqrt{z})\mathbf{k}$$

7. $\mathbf{F}(x, y, z) = \langle \ln x, \ln(xy), \ln(xyz) \rangle$

13–18 Determine whether or not the vector field is conservative. If it is conservative, find a function f such that $\mathbf{F} = \nabla f$.

13.
$$\mathbf{F}(x, y, z) = y^2 z^3 \mathbf{i} + 2xyz^3 \mathbf{j} + 3xy^2 z^2 \mathbf{k}$$

- **17.** $\mathbf{F}(x, y, z) = ye^{-x}\mathbf{i} + e^{-x}\mathbf{j} + 2z\mathbf{k}$
- 20. Is there a vector field **G** on \mathbb{R}^3 such that curl $\mathbf{G} = \langle xyz, -y^2z, yz^2 \rangle$? Explain.
- 21. Show that any vector field of the form

 $\mathbf{F}(x, y, z) = f(x) \mathbf{i} + g(y) \mathbf{j} + h(z) \mathbf{k}$

where f, g, h are differentiable functions, is irrotational.

22. Show that any vector field of the form

$$\mathbf{F}(x, y, z) = f(y, z) \mathbf{i} + g(x, z) \mathbf{j} + h(x, y) \mathbf{k}$$

is incompressible.

#20 Compute the divergence. #21 Compute the divergence. #22 Compute the divergence.

See the following page for exercises for which we don't have time, but would be good muscle-builders for physics and engineering:

#29 is the one that's needed for the later exercises.

23–29 Prove the identity, assuming that the appropriate partial derivatives exist and are continuous. If f is a scalar field and \mathbf{F} , \mathbf{G} are vector fields, then $f \mathbf{F}$, $\mathbf{F} \cdot \mathbf{G}$, and $\mathbf{F} \times \mathbf{G}$ are defined by

$$(f \mathbf{F})(x, y, z) = f(x, y, z) \mathbf{F}(x, y, z)$$
$$(\mathbf{F} \cdot \mathbf{G})(x, y, z) = \mathbf{F}(x, y, z) \cdot \mathbf{G}(x, y, z)$$
$$(\mathbf{F} \times \mathbf{G})(x, y, z) = \mathbf{F}(x, y, z) \times \mathbf{G}(x, y, z)$$

- 23. $\operatorname{div}(\mathbf{F} + \mathbf{G}) = \operatorname{div} \mathbf{F} + \operatorname{div} \mathbf{G}$
- 24. $\operatorname{curl}(\mathbf{F} + \mathbf{G}) = \operatorname{curl} \mathbf{F} + \operatorname{curl} \mathbf{G}$
- **25.** $\operatorname{div}(f\mathbf{F}) = f \operatorname{div} \mathbf{F} + \mathbf{F} \cdot \nabla f$
- **26.** $\operatorname{curl}(f\mathbf{F}) = f \operatorname{curl} \mathbf{F} + (\nabla f) \times \mathbf{F}$
- 27. div $(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot \operatorname{curl} \mathbf{F} \mathbf{F} \cdot \operatorname{curl} \mathbf{G}$

28. div
$$(\nabla f \times \nabla g) = 0$$

29. curl(curl \mathbf{F}) = grad(div \mathbf{F}) - $\nabla^2 \mathbf{F}$

Maxwell's Equations. HUGE for applied math and engineering. Some preface these equations with "God said..." because they describe how the universe works.

38. Maxwell's equations relating the electric field E and magnetic field H as they vary with time in a region containing no charge and no current can be stated as follows:

div
$$\mathbf{E} = 0$$

curl $\mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t}$
curl $\mathbf{H} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$

where c is the speed of light. Use these equations to prove the following:

(a)
$$\nabla \times (\nabla \times \mathbf{E}) = -\frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

(b) $\nabla \times (\nabla \times \mathbf{H}) = -\frac{1}{c^2} \frac{\partial^2 \mathbf{H}}{\partial t^2}$
(c) $\nabla^2 \mathbf{E} = \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$ [*Hint:* Use Exercise 29.]
(d) $\nabla^2 \mathbf{H} = \frac{1}{c^2} \frac{\partial^2 \mathbf{H}}{\partial t^2}$