1. Pictured are a contour map of $f$ and a curve with equation $g(x, y)=8$. Estimate the maximum and minimum values of $f$ subject to the constraint that $g(x, y)=8$. Explain your reasoning.

2. (a) Use a graphing calculator or computer to graph the circle $x^{2}+y^{2}=1$. On the same screen, graph several curves of the form $x^{2}+y=c$ until you find two that just touch the circle. What is the significance of the values of $c$ for these two curves?
(b) Use Lagrange multipliers to find the extreme values of $f(x, y)=x^{2}+y$ subject to the constraint $x^{2}+y^{2}=1$. Compare your answers with those in part (a).

3-17 Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint(s).
3. $f(x, y)=x^{2}+y^{2} ; \quad x y=1$
15. $f(x, y, z)=x+2 y ; \quad x+y+z=1, \quad y^{2}+z^{2}=4$
16. $f(x, y, z)=3 x-y-3 z$; $x+y-z=0, \quad x^{2}+2 z^{2}=1$
17. $f(x, y, z)=y z+x y ; \quad x y=1, \quad y^{2}+z^{2}=1$

18-19 Find the extreme values of $f$ on the region described by the inequality.
18. $f(x, y)=2 x^{2}+3 y^{2}-4 x-5, \quad x^{2}+y^{2} \leqslant 16$
19. $f(x, y)=e^{-x y}, \quad x^{2}+4 y^{2} \leqslant 1$
20. Consider the problem of maximizing the function
$f(x, y)=2 x+3 y$ subject to the constraint $\sqrt{x}+\sqrt{y}=5$.
(a) Try using Lagrange multipliers to solve the problem.
(b) Does $f(25,0)$ give a larger value than the one in part (a)?
(c) Solve the problem by graphing the constraint equation and several level curves of $f$.
(d) Explain why the method of Lagrange multipliers fails to solve the problem.
(e) What is the significance of $f(9,4)$ ?
21. Consider the problem of minimizing the function $f(x, y)=x$ on the curve $y^{2}+x^{4}-x^{3}=0$ (a piriform).
(a) Try using Lagrange multipliers to solve the problem.
(b) Show that the minimum value is $f(0,0)=0$ but the Lagrange condition $\nabla f(0,0)=\lambda \nabla g(0,0)$ is not satisfied for any value of $\lambda$.
(c) Explain why Lagrange multipliers fail to find the minimum value in this case.
4. $f(x, y)=4 x+6 y ; \quad x^{2}+y^{2}=13$
5. $f(x, y)=x^{2} y ; \quad x^{2}+2 y^{2}=6$
6. $f(x, y)=e^{x y} ; \quad x^{3}+y^{3}=16$
7. $f(x, y, z)=2 x+6 y+10 z ; \quad x^{2}+y^{2}+z^{2}=35$
8. $f(x, y, z)=8 x-4 z ; \quad x^{2}+10 y^{2}+z^{2}=5$
9. $f(x, y, z)=x y z ; \quad x^{2}+2 y^{2}+3 z^{2}=6$
10. $f(x, y, z)=x^{2} y^{2} z^{2} ; \quad x^{2}+y^{2}+z^{2}=1$
II. $f(x, y, z)=x^{2}+y^{2}+z^{2} ; \quad x^{4}+y^{4}+z^{4}=1$
12. $f(x, y, z)=x^{4}+y^{4}+z^{4} ; \quad x^{2}+y^{2}+z^{2}=1$
13. $f(x, y, z, t)=x+y+z+t ; \quad x^{2}+y^{2}+z^{2}+t^{2}=1$
14. $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}+x_{2}+\cdots+x_{n}$;
$x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1$
24. Referring to Exercise 23, we now suppose that the production is fixed at $b L^{\alpha} K^{1-\alpha}=Q$, where $Q$ is a constant. What values of $L$ and $K$ minimize the cost function $C(L, K)=m L+n K$ ?
25. Use Lagrange multipliers to prove that the rectangle with maximum area that has a given perimeter $p$ is a square.
26. Use Lagrange multipliers to prove that the triangle with maximum area that has a given perimeter $p$ is equilateral.

Hint: Use Heron's formula for the area:

$$
A=\sqrt{s(s-x)(s-y)(s-z)}
$$

where $s=p / 2$ and $x, y, z$ are the lengths of the sides.
27-39 Use Lagrange multipliers to give an alternate solution to the indicated exercise in Section 15.7.

## 27. Exercise 39

28. Exercise 40
29. Exercise 41
30. Exercise 42
31. Exercise 43
32. Exercise 44
33. Exercise 45
34. Exercise 46
35. Exercise 47
36. Exercise 48
37. Exercise 49
38. Exercise 50
39. Exercise 53

CaS 22. (a) If your computer algebra system plots implicitly defined curves, use it to estimate the minimum and maximum values of $f(x, y)=x^{3}+y^{3}+3 x y$ subject to the constraint $(x-3)^{2}+(y-3)^{2}=9$ by graphical methods.
(b) Solve the problem in part (a) with the aid of Lagrange multipliers. Use your CAS to solve the equations numerically. Compare your answers with those in part (a).
23. The total production $P$ of a certain product depends on the amount $L$ of labor used and the amount $K$ of capital investment. In Sections 15.1 and 15.3 we discussed how the CobbDouglas model $P=b L^{a} K^{1-a}$ follows from certain economic assumptions, where $b$ and $\alpha$ are positive constants and $\alpha<1$. If the cost of a unit of labor is $m$ and the cost of a unit of capital is $n$, and the company can spend only $p$ dollars as its total budget, then maximizing the production $P$ is subject to the constraint $m L+n K=p$. Show that the maximum production occurs when

$$
L=\frac{\alpha p}{m} \quad \text { and } \quad K=\frac{(1-\alpha) p}{n}
$$

Ca5 43-44 Find the maximum and minimum values of $f$ subject to the given constraints. Use a computer algebra system to solve the system of equations that arises in using Lagrange multipliers. (If your CAS finds only one solution, you may need to use additional commands.)
43. $f(x, y, z)=y e^{x-z} ; \quad 9 x^{2}+4 y^{2}+36 z^{2}=36, x y+y z=1$
44. $f(x, y, z)=x+y+z ; \quad x^{2}-y^{2}=z, \quad x^{2}+z^{2}=4$
45. (a) Find the maximum value of

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sqrt[\lambda]{x_{1} x_{2} \cdots x_{n}}
$$

given that $x_{1}, x_{2}, \ldots, x_{n}$ are positive numbers and $x_{1}+x_{2}+\cdots+x_{n}=c$, where $c$ is a constant.
(b) Deduce from part (a) that if $x_{1}, x_{2}, \ldots, x_{n}$ are positive numbers, then

$$
\sqrt[n]{x_{1} x_{2} \cdots x_{n}} \leqslant \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

This inequality says that the geometric mean of $n$ numbers is no larger than the arithmetic mean of the numbers. Under what circumstances are these two means equal?
40. Find the maximum and minimum volumes of a rectangular box whose surface area is $1500 \mathrm{~cm}^{2}$ and whose total edge length is 200 cm .
41. The plane $x+y+2 z=2$ intersects the paraboloid $z=x^{2}+y^{2}$ in an ellipse. Find the points on this ellipse that are nearest to and farthest from the origin.
42. The plane $4 x-3 y+8 z=5$ intersects the cone $z^{2}=x^{2}+y^{2}$ in an ellipse.
(a) Graph the cone, the plane, and the ellipse.
(b) Use Lagrange multipliers to find the highest and lowest points on the ellipse.
46. (a) Maximize $\sum_{i=1}^{n} x_{i} y_{i}$ subject to the constraints $\sum_{i=1}^{n} x_{i}^{2}=1$ and $\sum_{i=1}^{n} y_{i}^{2}=1$.
(b) Put

$$
x_{i}=\frac{a_{i}}{\sqrt{\sum a_{j}^{2}}} \quad \text { and } \quad y_{i}=\frac{b_{i}}{\sqrt{\Sigma b_{j}^{2}}}
$$

to show that

$$
\sum a_{i} b_{i} \leqslant \sqrt{\sum a_{j}^{2}} \sqrt{\sum b_{j}^{2}}
$$

for any numbers $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$. This inequality is known as the Cauchy-Schwarz Inequality.

