1-2 Find the domain of the vector function.
I. $\mathbf{r}(t)=\left\langle\sqrt{4-t^{2}}, e^{-3 t}, \ln (t+1)\right\rangle$

3-6 Find the limit.
5. $\lim _{t \rightarrow 0}\left(e^{-3 t} \mathbf{i}+\frac{t^{2}}{\sin ^{2} t} \mathbf{j}+\cos 2 t \mathbf{k}\right)$
6. $\lim _{t \rightarrow \infty}\left\langle\arctan t, e^{-2 t}, \frac{\ln t}{t}\right\rangle$

7-14 Sketch the curve with the given vector equation. Indicate with an arrow the direction in which t increases.
7. $\mathbf{r}(t)=\langle\sin t, t\rangle \quad$ 9. $\mathbf{r}(t)=\langle t, \cos 2 t, \sin 2 t\rangle$
13. $\mathbf{r}(t)=t^{2} \mathbf{i}+t^{4} \mathbf{j}+t^{6} \mathbf{k}$

15-18 Find a vector equation and parametric equations for the line segment that joins P to Q.
17. $P(1,-1,2), \quad Q(4,1,7)$

19-24 Match the parametric equations with the graphs
(labeled I-VI). Give reasons for your choices.
19. $x=\cos 4 t, \quad y=t, \quad z=\sin 4 t$
20. $x=t, \quad y=t^{2}, \quad z=e^{-t} \quad$ Figures on Page 2
21. $x=t, \quad y=1 /\left(1+t^{2}\right), \quad z=t^{2}$
22. $x=e^{-t} \cos 10 t, \quad y=e^{-t} \sin 10 t, \quad z=e^{-t}$
23. $x=\cos t, \quad y=\sin t, \quad z=\sin 5 t$
24. $x=\cos t, \quad y=\sin t, \quad z=\ln t$
25. Show that the curve with parametric equations $x=t \cos t$, $y=t \sin t, z=t$ lies on the cone $z^{2}=x^{2}+y^{2}$, and use this fact to help sketch the curve.
27. At what points does the curve $\mathbf{r}(t)=t \mathbf{i}+\left(2 t-t^{2}\right) \mathbf{k}$ intersect the paraboloid $z=x^{2}+y^{2}$?

29-32 Use a computer to graph the curve with the given vector equation. Make sure you choose a parameter domain and viewpoints that reveal the true nature of the curve.
29. $\mathbf{r}(t)=\langle\cos t \sin 2 t, \sin t \sin 2 t, \cos 2 t\rangle$

Don't panic if you don't have access to Computer Algebra System for \#29. FYI and FWIW, I entered this into Wolframalpha.com: 3D parametric plot $r(t)=<\sin (t), \cos (t), t>$ for $t=0$ to $8 * \operatorname{Pi}$

And it gave the plot seen on the right:

