I-2 Find the domain of the vector function.

$$\mathbf{I.} \ \mathbf{r}(t) = \left\langle \sqrt{4 - t^2}, e^{-3t}, \ln(t + 1) \right\rangle$$

3-6 Find the limit.

5.
$$\lim_{t\to 0} \left(e^{-3t} \mathbf{i} + \frac{t^2}{\sin^2 t} \mathbf{j} + \cos 2t \mathbf{k} \right)$$

6. $\lim_{t\to \infty} \left\langle \arctan t, e^{-2t}, \frac{\ln t}{t} \right\rangle$

7–14 Sketch the curve with the given vector equation. Indicate with an arrow the direction in which t increases.

7.
$$\mathbf{r}(t) = \langle \sin t, t \rangle$$

9.
$$\mathbf{r}(t) = \langle t, \cos 2t, \sin 2t \rangle$$

$$[\mathbf{I3.}] \mathbf{r}(t) = t^2 \mathbf{i} + t^4 \mathbf{j} + t^6 \mathbf{k}$$

15–18 Find a vector equation and parametric equations for the line segment that joins P to Q.

17.
$$P(1, -1, 2), Q(4, 1, 7)$$

19-24 Match the parametric equations with the graphs (labeled I-VI). Give reasons for your choices.

19.
$$x = \cos 4t$$
, $y = t$, $z = \sin 4t$

20.
$$x = t$$
, $y = t^2$, $z = e^{-t}$ Figures on Page 2

21.
$$x = t$$
, $y = 1/(1 + t^2)$, $z = t^2$

22.
$$x = e^{-t} \cos 10t$$
, $y = e^{-t} \sin 10t$, $z = e^{-t}$

23.
$$x = \cos t$$
, $y = \sin t$, $z = \sin 5t$

24.
$$x = \cos t$$
, $y = \sin t$, $z = \ln t$

25. Show that the curve with parametric equations $x = t \cos t$, $y = t \sin t$, z = t lies on the cone $z^2 = x^2 + y^2$, and use this fact to help sketch the curve.

27. At what points does the curve
$$\mathbf{r}(t) = t \mathbf{i} + (2t - t^2) \mathbf{k}$$
 intersect the paraboloid $z = x^2 + y^2$?

29–32 Use a computer to graph the curve with the given vector equation. Make sure you choose a parameter domain and viewpoints that reveal the true nature of the curve.

29. $\mathbf{r}(t) = \langle \cos t \sin 2t, \sin t \sin 2t, \cos 2t \rangle$

Don't panic if you don't have access to Computer Algebra System for #29. FYI and FWIW, I entered this into Wolframalpha.com: 3D parametric plot $r(t) = \sin(t), \cos(t), t > \text{ for } t = 0 \text{ to } 8 \text{ Pi}$

And it gave the plot seen on the right:



