39-42 Use intercepts to help sketch the plane.
39. $2 x+5 y+z=10$
42. $6 x+5 y-3 z=15$

43-45 Find the point at which the line intersects the given plane.
43. $x=3-t, y=2+t, z=5 t ; \quad x-y+2 z=9$
45. $x=y-1=2 z ; \quad 4 x-y+3 z=8$
46. Where does the line through $(1,0,1)$ and $(4,-2,2)$ intersect the plane $x+y+z=6$?
47. Find direction numbers for the line of intersection of the planes $x+y+z=1$ and $x+z=0$.
48. Find the cosine of the angle between the planes $x+y+z=0$ and $x+2 y+3 z=1$.

49-54 Determine whether the planes are parallel, perpendicular, or neither. If neither, find the angle between them.
49. $x+4 y-3 z=1, \quad-3 x+6 y+7 z=0$
50. $2 z=4 y-x, \quad 3 x-12 y+6 z=1$
51. $x+y+z=1, \quad x-y+z=1$

55-56 (a) Find parametric equations for the line of intersection of the planes and (b) find the angle between the planes.
55. $x+y+z=1, \quad x+2 y+2 z=1$

57-58 Find symmetric equations for the line of intersection of the planes.
57. $5 x-2 y-2 z=1, \quad 4 x+y+z=6$
59. Find an equation for the plane consisting of all points that are equidistant from the points $(1,0,-2)$ and $(3,4,0)$.
61. Find an equation of the plane with x-intercept a, y-intercept b, and z-intercept c.
62. (a) Find the point at which the given lines intersect:

$$
\begin{aligned}
& \mathbf{r}=\langle 1,1,0\rangle+t\langle 1,-1,2\rangle \\
& \mathbf{r}=\langle 2,0,2\rangle+s\langle-1,1,0\rangle
\end{aligned}
$$

(b) Find an equation of the plane that contains these lines.
63. Find parametric equations for the line through the point $(0,1,2)$ that is parallel to the plane $x+y+z=2$ and perpendicular to the line $x=1+t, y=1-t, z=2 t$.

Crooked \#43 is the exercise referenced in \#67.

