13. (a) Show that $\mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=\mathbf{0}$.
(b) Show that $\mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=1$.
14. A street vendor sells a hamburgers, b hot dogs, and c soft drinks on a given day. He charges $\$ 2$ for a hamburger, $\$ 1.50$ for a hot dog, and $\$ 1$ for a soft drink. If $\mathbf{A}=\langle a, b, c\rangle$ and $\mathbf{P}=\langle 2,1.5,1\rangle$, what is the meaning of the dot product $\mathbf{A} \cdot \mathbf{P}$?

15-20 Find the angle between the vectors. (First find an exact expression and then approximate to the nearest degree.)
16. $\mathbf{a}=\langle\sqrt{3}, 1\rangle, \quad \mathbf{b}=\langle 0,5\rangle$
20. $\mathbf{a}=\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}, \quad \mathbf{b}=4 \mathbf{i}-3 \mathbf{k}$

29-33 Find the direction cosines and direction angles of the vector. (Give the direction angles correct to the nearest degree.)
30. $\langle 1,-2,-1\rangle$
32. $2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$
\#s 30 and 32 are the only questions I think I've ever assigned on direction angles and direction cosines. They just don't come up again, in this course, and I can't remember ever seeing them again, after Calculus III.

23-24 Determine whether the given vectors are orthogonal, parallel, or neither.
24. (a) $\mathbf{u}=\langle-3,9,6\rangle, \quad \mathbf{v}=\langle 4,-12,-8\rangle$
(b) $\mathbf{u}=\mathbf{i}-\mathbf{j}+2 \mathbf{k}, \quad \mathbf{v}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}$
(c) $\mathbf{u}=\langle a, b, c\rangle, \quad \mathbf{v}=\langle-b, a, 0\rangle$
(d) $\mathbf{a}=2 \mathbf{i}+6 \mathbf{j}-4 \mathbf{k}, \quad \mathbf{b}=-3 \mathbf{i}-9 \mathbf{j}+6 \mathbf{k}$

35-40 Find the scalar and vector projections of \mathbf{b} onto \mathbf{a}.
36. $\mathbf{a}=\langle 1,2\rangle, \quad \mathbf{b}=\langle-4,1\rangle$
41. Show that the vector orth ${ }_{\mathbf{a}} \mathbf{b}=\mathbf{b}-\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ is orthogonal to \mathbf{a}. (It is called an orthogonal projection of \mathbf{b}.)
42. For the vectors in Exercise 36, find orth ${ }_{\mathbf{a}} \mathbf{b}$ and illustrate by drawing the vectors $\mathbf{a}, \mathbf{b}, \operatorname{proj}_{\mathbf{a}} \mathbf{b}$, and orth $_{\mathbf{a}} \mathbf{b}$.

