\qquad

Do all your work and submit answers with your work, on the separate paper provided. Organize your work for efficient grading and feedback. Leave a margin, especially in the top left, where the staple goes!

1. (5 pts) Find and graph the domain of $f(x, y)=\sqrt{x}+\sqrt{16-x^{2}-4 y^{2}}$.
2. (Bonus 5 pts) Use the fact that $x^{2} \geq x^{2}-y^{2}$ to prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{\sqrt{x^{2}-y^{2}}}{x}=0$.
3. Find the first partials f_{x} and f_{y} for...
a. (5 pts) $f(x, y)=\sqrt{2 x^{2}-x y-y^{2}}$
b. (5 pts) $f(x, y)=\int_{\cos \left(x^{2}\right)}^{y^{3}} \frac{t^{4} \tan \left(t^{2}\right)}{t^{2}+5} d t$
4. (5 pts) Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for the equation $x y z-x \cos \left(x^{2} y\right)=z^{2}$
5. Let $f(x, y)=e^{x^{2}-y^{2}}$.
a. (5 pts) Find an equation of the tangent plane to f at the point $(1,-1,1)$.
b. (5 pts) Use your previous answer to approximate $f(1.2,-0.9)$.
c. (5 pts) Find the actual value of $f(1.2,-0.9)$.
d. (5 pts) Find Δz for the change in z from $f(1,-1)=1$ to $f(1.2,-0.9)$
e. (5 pts) Find the differential approximation $d z \approx \Delta z$. You may calculate this, directly, or just use previous work and a subtraction.
6. Let $f(x, y)=\frac{y^{2}}{x}$.
a. (5 pts) What is the gradient at the point $P(1,2,4)$?
b. (5 pts) Find the directional derivative $D_{\bar{u}}$ in the direction of $\bar{u}=\langle 2, \sqrt{5}\rangle$.
7. Find the shortest distance between the plane $x+2 y+z=4$ and the point $P(1,-2,3)$ in two ways:
a. (5 pts) Use $1^{\text {st }}$ - and/or $2^{\text {nd }}-$ derivative test.
b. (5 pts) Use earlier skills from Chapter 12.
8. (5 pts) Find the point on the plane in \#7 that is closest to $P(1,-2,3)$.

Bonus: Answer up to 3 of the following for up to 15 bonus points.

1. (5 pts) (Line segment) Write the equation of the line segment between $A(1,2,3)$ and $B(-3,2,1)$.
2. (5 pts) Consider the object $9 x^{2}+4 z^{2}-25 y=0$. Show its traces in the planes $x=k, y=k, z=k$ for different choices of k and project those into the $y z-, x z-$, and $x y$ - planes, respectively.
3. (5 pts) Give a verbal description of the statement $\kappa=\left|\frac{d \bar{T}}{d s}\right|$. What is it? What does it mean? What's our shortcut for calculating it, in terms of $\bar{r}(t)$?

Distance Formula in Three Dimensions The distance $\left|P_{1} P_{2}\right|$ between the points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

3 Theorem If θ is the angle between the vectors \mathbf{a} and \mathbf{b}, then

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta
$$

Scalar projection of \mathbf{b} onto $\mathbf{a}: \quad \operatorname{comp}_{\mathbf{2}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$
Vector projection of \mathbf{b} onto $\mathbf{a}: \quad \operatorname{proj}_{\mathbf{a}} \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}} \mathbf{a}$

9 Theorem If θ is the angle between \mathbf{a} and \mathbf{b} (so $0 \leqslant \theta \leqslant \pi$), then

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta
$$

2 Parametric equations for a line through the point $\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to the direction vector $\langle a, b, c\rangle$ are

$$
x=x_{0}+a t \quad y=y_{0}+b t \quad z=z_{0}+c t
$$

Elliptic Paraboloid

Arc Length:

$$
\begin{gathered}
L=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}+\left[h^{\prime}(t)\right]^{2}} d t \\
=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t \\
L=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
\end{gathered}
$$

