1. Electric charge is distributed over the rectangle $1 \leqslant x \leqslant 3$, $0 \leqslant y \leqslant 2$ so that the charge density at (x, y) is $\sigma(x, y)=2 x y+y^{2}$ (measured in coulombs per square meter). Find the total charge on the rectangle.
2. Electric charge is distributed over the disk $x^{2}+y^{2} \leqslant 4$ so that the charge density at (x, y) is $\sigma(x, y)=x+y+x^{2}+y^{2}$ (measured in coulombs per square meter). Find the total charge on the disk.

3-10 Find the mass and center of mass of the lamina that occupies the region D and has the given density function ρ.
5. D is the triangular region with vertices $(0,0),(2,1),(0,3)$; $\rho(x, y)=x+y$
10. D is bounded by the parabolas $y=x^{2}$ and $x=y^{2}$; $\rho(x, y)=\sqrt{x}$
II. A lamina occupies the part of the disk $x^{2}+y^{2} \leqslant 1$ in the first quadrant. Find its center of mass if the density at any point is proportional to its distance from the x-axis.
12. Find the center of mass of the lamina in Exercise 11 if the density at any point is proportional to the square of its distance from the origin.

21-22 Use a computer algebra system to find the mass, center of mass, and moments of inertia of the lamina that occupies the region D and has the given density function.
21. $D=\{(x, y) \mid 0 \leqslant y \leqslant \sin x, 0 \leqslant x \leqslant \pi\} ; \quad \rho(x, y)=x y$
28. (a) Verify that

$$
f(x, y)= \begin{cases}4 x y & \text { if } 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1 \\ 0 & \text { otherwise }\end{cases}
$$

is a joint density function.
(b) If X and Y are random variables whose joint density function is the function f in part (a), find
(i) $P\left(X \geqslant \frac{1}{2}\right)$
(ii) $P\left(X \geqslant \frac{1}{2}, Y \leqslant \frac{1}{2}\right)$
(c) Find the expected values of X and Y.

