$\qquad$

1. First, evaluate $\int_{0}^{3}\left(x^{2}+3 x-5\right) d x$ as the limit of a Riemann sum and then by using the $2^{\text {nd }}$ Fundamental Theorem of Calculus.
2. What is the average value of $f(x)=x^{2}+3 x-5$ on the interval $[0,5]$ ?
3. Find the value $c \in(0,5)$ such that $f(c)=f_{\text {average }}$ on the interval $[0,5]$.
4. Evaluate the following integrals.
a. $\int_{-\sqrt{7}}^{0} t\left(t^{2}+1\right)^{1 / 3} d t$
b. $\int_{-\sqrt{7}}^{\sqrt{7}} t\left(t^{2}+1\right)^{1 / 3} d t$
c. $\int_{0}^{2 \pi} \frac{\cos x}{\sqrt{3 \sin x+4}} d x$
5. Find the area of the region enclosed by $y=x^{4}-4 x^{2}+4$ and $y=x^{2}$. Sketches can be pretty helpful.
