\qquad

Even though there are 3.1 questions on this test, you do not have to differentiate by the definition, unless specifically asked to do so.

1. At what x-values does $f(x)=2 x^{3}-\frac{13}{2} x^{2}-28 x+5$ have horizontal tangents? Find the corresponding y-values and report the points of horizontal tangency as ordered pairs (points on the graph).

Bonus Use this information to give a rough sketch of $f(x)$. y-intercept is easy, but don't waste time on x-intercepts. At least not yet.
2. Inflating balloon questions (3.1 and 3.8 combined). A spherical balloon is being inflated.
a. What is its rate of change in volume, with respect to the radius r, when $r=3$ inches?
b. Suppose the rate of change of volume is 20 cubic inches per second. How fast is the radius changing, when the radius is $r=3$ inches?
3. Let $f(x)=\frac{5}{\sqrt{2 x-5}+2}$
a. Find an equation of the tangent line to $f(x)$ at the point $(7,1)$.
b. What is $f(17)$?
c. What is $f^{\prime}(17)$?
d. What is $\left.\frac{d f}{d x}\right|_{x=17}$?
4. Find the first derivatives.
a. $\frac{2 x^{2}+x-1}{3 x^{2}+5 x+2}$
b. $\frac{2 x-1}{3 x+2}$
c. $\frac{5 x+1}{2 \sqrt{x}}$
d. $\frac{2 \sqrt{x}}{5 x+1}$
e. $\left(x^{2}-3 x\right) \sin \left(x^{2}-3 x\right)$
f. $\quad \csc ^{2}\left(x^{2}-3 x\right)$
5. The figure, below shows the velocity $\frac{d s}{d t}$, in meters per second, of an object moving along a coordinate axis.
a. When does it reverse direction?
b. When is it standing still?
c. During what time period(s) is its velocity constant?
d. What's happening between time $t=4 \mathrm{sec}$ and $t=5 \mathrm{sec}$?
e. What happens at $t=6$ seconds?

Bonus Can you tell the net distance traveled by the object? In other words, what is $s(10)$? What is its TOTAL distance, if you count back-tracking as positive distance? In other words, what is $|s(10)|$?
6. a. Verify that $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ is on the graph of the equation $x \sin (2 y)=y \cos (2 x)$.
b. Find $\frac{d y}{d x}$.
c. Find an equation of the tangent line to the curve at $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$.
d. Find an equation of the normal line to the curve at $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$.
7. Machinists are boring out an engine cylinder that's 6 inches deep. They need the radius of the cylinder to be 2 inches, and they need the volume of the cylinder to be within half a percent of the calculated volume that a 2 -inch radius would produce. What is the allowable error in the radius of the cylinder? What is the maximum percent error in the radius of the cylinder?
8. A cone filter is 6 inches high and 6 inches in diameter. Coffee is draining from the cone filter into a cylindrical coffeepot that is also 6 inches in diameter. The coffee's dripping at a constant rate of $10 \frac{\mathrm{in}^{3}}{\mathrm{~min}}$.
b. How fast is the level of coffee in the cone decreasing, when the level of coffee in the cone is 5 inches deep?
c. How fast is the level in the pot rising when the coffee in the cone is 5 inches deep? 2 inches deep? 3 inches deep?
9. Use differentials to approximate $\sin \left(62^{\circ}\right)$.
10. Use the linearization to approximate $\sin \left(62^{\circ}\right)$.
11. Use the tangent line to approximate $\sin \left(62^{\circ}\right)$

Bonus Use $a=60^{\circ}$ and a quadratic approximation for $\sin \left(62^{\circ}\right)$.
Bonus Use the $6^{\text {th }}$ degree Taylor polynomial to approximate $\sin \left(62^{0}\right)$.
Other good stuff:
Differentials to estimate the volume of paint needed to cover an object with a coat of a desired thickness.
Differentials to approximate something like $\sqrt{103}$.

