Name

Even though there are 3.1 questions on this test, you do *not* have to differentiate by the definition, *unless specifically asked to do so*.

1. At what x-values does $f(x) = 2x^3 - \frac{13}{2}x^2 - 28x + 5$ have horizontal tangents? Find the corresponding y-values and report the points of horizontal tangency as ordered pairs (points on the graph).

Bonus Use this information to give a rough sketch of f(x). *y*-intercept is easy, but don't waste time on *x*-intercepts. At least not yet.

2. Inflating balloon questions (3.1 and 3.8 combined). A spherical balloon is being inflated.

a. What is its rate of change in volume, with respect to the radius r, when r = 3 inches?

b. Suppose the rate of change of volume is 20 cubic inches per second. How fast is the radius changing, when the radius is r = 3 inches?

- 3. Let $f(x) = \frac{5}{\sqrt{2x-5}+2}$
 - a. Find an equation of the tangent line to f(x) at the point (7, 1).
 - b. What is f(17)?
 - c. What is f'(17)?
 - d. What is $\frac{df}{dx}\Big|_{x=17}$?
- 4. Find the first derivatives.
 - a. $\frac{2x^2 + x 1}{3x^2 + 5x + 2}$ b. $\frac{2x - 1}{3x + 2}$ c. $(x^2 - 3x)\sin(x^2 - 3x)$

c.
$$\frac{5x+1}{2\sqrt{x}}$$
 f. $\csc^2(x^2 - 3x)$

5. The figure, below shows the velocity $\frac{ds}{dt}$, in meters per second, of an object moving along a coordinate axis.

a. When does it reverse direction?

Bonus Can you tell the net distance traveled by the object? In other words, what is s(10)? What is its TOTAL distance, if you count back-tracking as positive distance? In other words, what is |s(10)|?

6. a. Verify that
$$\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$
 is on the graph of the equation $x\sin(2y) = y\cos(2x)$.
b. Find $\frac{dy}{dx}$.

c. Find an equation of the tangent line to the curve at $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$. d. Find an equation of the normal line to the curve at $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$.

7. Machinists are boring out an engine cylinder that's 6 inches deep. They need the radius of the cylinder to be 2 inches, and they need the volume of the cylinder to be within half a percent of the calculated volume that a 2-inch radius would produce. What is the allowable error in the radius of the cylinder? What is the maximum *percent* error in the radius of the cylinder?

8. A cone filter is 6 inches high and 6 inches in diameter. Coffee is draining from the cone filter into a cylindrical coffeepot that is *also* 6 inches in diameter. The coffee's

dripping at a constant rate of 10
$$\frac{in^3}{\min}$$
.

b. How fast is the level of coffee in the cone decreasing, when the level of coffee in the cone is 5 inches deep?

c. How fast is the level in the pot rising when the coffee in the cone is 5 inches deep? 2 inches deep? 3 inches deep?

- 9. Use differentials to approximate $sin(62^{\circ})$.
- 10. Use the linearization to approximate $\sin(62^{\circ})$.
- 11. Use the tangent line to approximate $\sin(62^\circ)$

Bonus Use $a = 60^{\circ}$ and a *quadratic* approximation for $sin(62^{\circ})$. **Bonus** Use the 6th degree Taylor polynomial to approximate $sin(62^{\circ})$.

Other good stuff:

Differentials to estimate the volume of paint needed to cover an object with a coat of a desired thickness.

Differentials to approximate something like $\sqrt{103}$.