1. (5 pts each) Find the average rate of change of $f(x)=x^{2}+5 x+2$ over the intervals. a. [2, 2.1]
b. [2, 2.001]
2. (10 pts) Based on your work in \#1 (and maybe a few more intervals), what would you estimate the rate of change of f is, at $x=2$?
3. (10 pts) Compute $f^{\prime}(x)$ by the limit definition and use it to find the (instantaneous) slope of f at $x=2$.
4. (3 pts each) Use the graph of the function $f(x)$ to evaluate / answer the following:
a. Is f continuous @ $x=-1$? Explain.

c. Evaluate $\lim _{x \rightarrow-1} f(x)$
d. Where does f have a removable discontinuity, and what would you define f to be at that point (or those points?
5. (10 pts) Prove that $\lim _{x \rightarrow 3}(3 x+7)=16$.
6. Differentiate. Do not simplify.
a. $3 x^{5}-11 x^{2}+\frac{4}{x^{3 / 2}}$
b. $\left(x^{3}+7 x\right)^{5 / 9}$
c. $\sin ^{3}\left(3 x^{5}-1\right)$
d. $\sin (x) \tan (5 x)$
e. $\frac{\cos (3 x)}{\left(x^{2}-2 x\right)^{2 / 3}}$
7. (10 pts) How fast is the base of a 30 -foot ladder moving away from a wall, if, when it's 15 feet away from the wall, the top of the ladder is falling at 10 feet per second?

8. (10 pts) Sketch the graph of $f(x)=4 x^{3}+3 x^{2}-36 x-27$. Include all local extremes and inflection points. The more complete your graph, the more points (intercepts, shape, etc.)
9. Use differentials to approximate $\sin \left(65^{\circ}\right)$.
