1. (5 pts each) Find the average rate of change of $f(x)=x^{2}-3 x+2$ over the intervals. a. $[1,1.1]$
b. [1, 1.001]
2. (10 pts) Based on your work in \#1 (and maybe a few more intervals), what would you estimate the rate of change of f is, at $x=1$?
3. (10 pts) Compute $f^{\prime}(x)$ by the limit definition and use it to find the (instantaneous) slope of f at $x=1$.
4. (3 pts each) Use the graph of the function $f(x)$ to evaluate / answer the following:
a. $\lim _{x \rightarrow 3^{-}} f(x)$
b. $\lim _{x \rightarrow 3^{+}} f(x)$
c. $\lim _{x \rightarrow 3} f(x)$
d. $\lim _{x \rightarrow-1} f(x)$
e. Where is f continuous?

f. Where does f have a removable discontinuity, and what would you define f to be at that point (or those points?
5. (10 pts) Prove that $\lim _{x \rightarrow 3}(5 x-2)=13$.
6. Differentiate. Do not simplify.
a. $3 x^{5}-11 x^{2}+4 x^{-3 / 2}$
b. $\left(x^{2}-2 x\right)^{2 / 3}$
c. $\left(x^{2}-2 x\right)^{2 / 3} \sin (5 x)$
d. $(\tan (3 x) \cot (x))$
e. $\frac{\left(x^{2}-2 x\right)^{2 / 3}}{\sin (5 x)}$
7. (10 pts) A conical tank, 10 feet high, with a radius of 5 feet is being filled at a rate of 0.5 cubic feet per second. At what rate is the level of the tank rising when the level of the tank is 4 feet?
8. (10 pts) Sketch the graph of $f(x)=x^{3}-x^{2}-8 x+12$. Include all local extremes and inflection points. The more complete your graph, the more points (intercepts, shape, etc.)
9. Use the linearization of $f(x)=\sqrt{x}$ to approximate $\sqrt{39}$
