Section 11.11 #s 5, 6, 11, 12, 13, 14, plus either one of 33 or 36

Recall, Power series representation of f(x) as a power series, via Taylor series expansion about

$$x = a$$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

and the nth-degree Taylor polynomial of f at a.

$$T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i$$

$$= f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n$$

$$\to f(x) \text{ as } n \to \infty$$

$$f(x) \approx T_n(x)$$
.

Einstein's theory of special relativity

the mass m of an object moving with velocity v is

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$
 New for said
$$K = \frac{1}{2}mv^2$$

where m_0 is the mass of the object when at rest and c is the speed of light.

The kinetic energy of the object is the difference between its total energy and its energy at rest:

$$K = mc^2 - m_0c^2$$

(a) Show that when v is very small compared with c, this expression for K agrees with classical Newtonian physics: $K = \frac{1}{2}m_0v^2$.

The problem of the second physics:
$$K = \frac{1}{2}m_0v^2$$
.

 $K = mc^2 - m_0c^2 = \frac{m_0c^2}{\sqrt{1 - v^2/c^2}} - m_0c^2 = m_0c^2 \left[\left(1 - \frac{v^2}{c^2} \right)^{-1/2} - 1 \right]$
 $x = -v^2/c^2 \qquad m_0c^2 \left[\left(1 + \left(-\frac{v^2}{c^2} \right) \right)^{-\frac{1}{2}} - 1 \right]$
 $(1 + x)^{-1/2} = 1 - \frac{1}{2}x + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right)}{2!} x^2 + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(-\frac{5}{2} \right)}{3!} x^3 + \cdots$
 $= 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \cdots$
 $K = m_0c^2 \left[\left(1 + \frac{1}{2} \frac{v^2}{c^2} + \frac{3}{8} \frac{v^4}{c^4} + \frac{5}{16} \frac{v^6}{c^6} + \cdots \right) - 1 \right]$
 $= m_0c^2 \left(\frac{1}{2} \frac{v^2}{c^2} + \frac{3}{8} \frac{v^4}{c^4} + \frac{5}{16} \frac{v^6}{c^6} + \cdots \right) - 1$

If v is much smaller than c ,

 $V_{AM} = m_0c^2 \left(\frac{1}{2} \frac{v^2}{c^2} \right) = \frac{1}{2}m_0v^2$

where $v = s_0c^2 \left(\frac{1}{2} \frac{v^2}{c^2} \right) = \frac{1}{2}m_0v^2$

3–10 Find the Taylor polynomial $T_3(x)$ for the function fcentered at the number a. Graph f and T_3 on the same screen.

5.
$$f(x) = \cos x$$
, $a = \pi/2$

Use Wolfram Alpha!!!

$$f'(x) = \cos X \qquad \cos \frac{\pi}{2} = 0$$

$$f'(x) = -\sin X \qquad -\sin \frac{\pi}{2} = 0$$

$$f''(x) = -\cos X \qquad -\cos \frac{\pi}{2} = 0$$

$$f''(x) = -\cos x \qquad -\cos \frac{\pi}{2} = 0$$

$$f'''(x) = Sin X \qquad sin \frac{\pi}{2} = ($$

6. $f(x) = e^{-x} \sin x$, a = 0

11–12 Use a computer algebra system to find the Taylor polynomials T_n centered at a for n = 2, 3, 4, 5. Then graph these polynomials and f on the same screen.

11. $f(x) = \cot x$, $a = \pi/4$

Here's one with a restricted domain, fo' sho'.

$$1 - 2\left(x - \frac{\pi}{4}\right) + 2\left(x - \frac{\pi}{4}\right)^2 - \frac{8}{3}\left(x - \frac{\pi}{4}\right)^3 + \frac{10}{3}\left(x - \frac{\pi}{4}\right)^4 - \frac{64}{15}\left(x - \frac{\pi}{4}\right)^5 + O\left(\left(x - \frac{\pi}{4}\right)^6\right)^{-\frac{\pi}{4}}$$

I could only get the WolframAlpha site to handle up to degree 4 all on the same graph, and then the input got too long...

12.
$$f(x) = \sqrt[3]{1 + x^2}$$
, $a = 0$

$$\lim_{n \to 0} \frac{1}{2} \int_{0}^{2} x^{n} \int_{0}^$$

13-22

- (a) Approximate f by a Taylor polynomial with degree n at the (a) $2 + \frac{1}{2}(x-y) - \frac{1}{2}(x-y)^2$ number a.
- approximation $f(x) \approx T_n(x)$ when x lies in the given

13.
$$f(x) = \sqrt{x}$$
, $a = 4$, $n = 2$, $4 \le x \le 4.2$

$$f(4) = 2$$

$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$$

$$f''(x) = -\frac{1}{4}x^{-\frac{2}{2}}$$

$$f'''(x) = -\frac{1}{4}x^{-\frac{2}{2}}$$

$$f'''(x) = \frac{1}{2}x^{-\frac{1}{2}}$$

$$f'''(x) = -\frac{1}{4}x^{-\frac{2}{2}}$$

$$f'''(x) = \frac{1}{2}x^{-\frac{1}{2}}$$

(c) GRAPH
$$R_n(x)$$
 !?

CAKE
$$f(x) = J_2(x) + R_2(x)$$

$$R_2(x) = f(x) - J_2(x)$$

14.
$$f(x) = x^{-2}$$
, $a = 1$, $n = 2$, $0.9 \le x \le 1.1$

14.
$$f(x) = x^{-2}$$
, $a = 1$, $n = 2$, $0.9 \le x \le 1.1$

$$\begin{cases}
f'(x) = x^{-2} & f'(1) = 1 \\
f'(x) = -2x^{-3} & f''(1) = -2
\end{cases}$$

$$f''(x) = 6x^{-4} = 3! x^{-4} f''(1) = 6$$

$$f'''(x) = -24$$

$$f'''(x) = -24$$

$$f'''(x) = 5! x^{-6}$$

$$f''''(x) = 720$$

$$\int_{n=0}^{\infty} \frac{f^{(n)}(z)}{n!} (x-z)^{n}$$

$$\int_{2}^{\infty} (x) = \left(-\frac{z}{1!}(x-1)^{n} + \frac{\varphi}{2!}(x-1)^{n}\right)$$

$$\int_{2}^{\infty} (x) = 1 - 2(x-1) + 3(x-1)^{2}$$

(b)
$$|R_{3}(x)| \leq \frac{M}{3!} |x-i|^{3}$$

 $|R_{3}(x)| \leq \frac{M}{3!} |x-i|^{3}$

$$f^{(3)}(x) = -24 \times ^{-5}$$

$$= -24 \times ^{-5}$$

 $\left| f^{(3)} \right| \text{ is decreasing}$ $= \left| f^{(3)}(x) \right| \leq \left| f^{(3)}(.9) \right| = \frac{24}{.95}$

$$|f^{(3)}(.9) = M = \frac{24}{.9^5} \approx 40.64421074$$

$$= 1 - 2(x - i) + 3(x - i)^{2}$$

December 04, 2015

25. Use Taylor's Inequality to determine the number of terms of the Maclaurin series for e^x that should be used to estimate $e^{0.1}$ to within 0.00001.

33. An electric dipole consists of two electric charges of equal magnitude and opposite sign. If the charges are q and -q and are located at a distance d from each other, then the electric field E at the point P in the figure is

$$E = \frac{q}{D^2} - \frac{q}{(D+d)^2}$$

By expanding this expression for E as a series in powers of d/D, show that E is approximately proportional to $1/D^3$ when P is far away from the dipole.

36. A uniformly charged disk has radius R and surface charge density σ as in the figure. The electric potential V at a point P at a distance d along the perpendicular central axis of the disk is

$$V = 2\pi k_e \sigma (\sqrt{d^2 + R^2} - d)$$

where k_e is a constant (called Coulomb's constant). Show that

$$V \approx \frac{\pi k_e R^2 \sigma}{d}$$
 for large d

11-11-notes.notebook

December 04, 2015