MAT 202 100 Points Fall, 2009

1. Let x = 1 + t and $y = t^2 - 4t$.

a. Sketch the curve by using the parametric equations to plot points, for $0 \le t \le 5$. Indicate with arrows the direction the curve is traced as *t* increases.

t	0	1	2	3	4	5
x						
у						

b. Eliminate the parameter to find a Cartesian equation for the curve.

- 2. Suppose a curve is described by the parametric equations $x = t^4 + 1$, $y = t^3 + t$.
 - a. Find an equation of the tangent to the curve at t = -1.

b. Find the point(s) on the curve where the tangent is horizontal, if any.

c. Find the point(s) on the curve where the tangent is vertical, if any.

- 3. Consider the curve given parametrically by $x = \cos(t) + \cos(2t), y = \sin(t) + \sin(2t)$
 - a. Sketch the curve, using the table, below, as a guide.

t	0	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	2π
x							
у							

b. Find the tangent(s) to the curve at (x, y) = (-1, 0). Add this (these) tangent line(s) to your sketch, above.

c. Write the integral for finding the arc length from t = 0 to $t = \pi$

4. Consider the curve described by the parametric equations $x = \sqrt{t}$, $y = t^2 - 2t$. Write the integral for finding the area bounded between the curve and the *x*-axis. 5. Check the function (in polar coordinates) $r = 1 + 2 \sin \theta$ for symmetry and sketch its graph.

6. Convert each of the following to Cartesian form, and identify each graph as a common geometric figure.

a. $r = 3\cos\theta$

b. $r = \sec \theta \tan \theta$

7. Find the *exact* length of the curve $r = e^{2\theta}, 0 \le \theta \le \frac{\pi}{2}$.

8. (S 12.1) We have the following definition from lecture for $\lim_{n \to \infty} a_n = \infty$:

D5
$$2n \xrightarrow{n \to \infty} \infty$$
 means if you give me
 $M > 0$, I can find $N \in \mathbb{N}$ such that
 $a_n > M$ for every $n > \mathbb{N}$.
Consider the sequence $\{a_n\} = \left\{\frac{n+5}{\sqrt{n-1}}\right\}$. Find an N such that $a_n > 100$ for all $n > N$.

Bonus Prove that $\lim_{n\to\infty} \frac{n+5}{\sqrt{n-1}} = \infty$, in general. In other words, given any M > 0, find an N (as a function of M, such that $a_n > M$ for all n > N.

9. State whether the following series converge or diverge. Justify your answer, lest ye earn less than full credit.

a.
$$\sum_{n=1}^{\infty} \frac{n+5}{\sqrt{n-1}}$$

b.
$$\sum_{n=1}^{\infty} \frac{2}{n^2 + 1}$$

$$c. \quad \sum_{n=1}^{\infty} \frac{2}{n^2 - 1}$$

$$d. \quad \sum_{n=1}^{\infty} \frac{2}{n^2 + 1}$$

e.
$$\sum_{n=2}^{\infty} \frac{\ln(n)}{n}$$

f.
$$\sum_{n=2}^{\infty} \frac{\ln(n)}{n^2}$$

g.
$$\sum_{n=2}^{\infty} (-1)^{n-1} \frac{\ln(n)}{n}$$

h.
$$\sum_{n=1}^{\infty} \left(\frac{5}{3}\right)^{-n+1}$$

i.
$$\sum_{n=1}^{\infty} \frac{5^n}{n!}$$

j.
$$\sum_{n=1}^{\infty} \left(\frac{11n^3 - 1}{5n^3 + 7} \right)^n$$

10. Find the exact value of
$$\sum_{n=1}^{\infty} 12 \left(\frac{3}{5}\right)^n$$

11. Consider the series
$$S = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{4}{3}}}$$
.

a. Use S_6 to estimate S. I will be docking points for roundoff errors.

- b. Use an integral to obtain an upper bound on the error in using S_6 .
- c. Use *two* integrals and S_6 to obtain a *better* estimate for S.

d. Find N such that S_N is within 0.001 of S.