1. For what values of r does the function $y=e^{r t}$ satisfy the differential equation

$$
y^{\prime \prime}+y^{\prime}-20 y=0 ?
$$

2. For what nonzero values of k does the function $y=\sin (k t)$ satisfy $y^{\prime \prime}+4 y=0$?
3. Solve the differential equation $5 y y^{\prime}=3 x$.
4. Select a direction field for the differential equation $y^{\prime}=y^{2}-x^{2}$ from a set of direction fields labeled I-IV.

5. The functions $y=C e^{2 x^{2}}$ (for any constant C) are solutions of the differential equation $y^{\prime}=4 x y$. Find the solution that satisfies the initial condition $y(1)=1$.
6. Solve the differential equation $y^{\prime}=\frac{7 x^{6} y}{\ln y}$
7. Solve the initial-value problem $x^{2} \frac{d y}{d x}+2 x y=-\sin x$, given that $y(\pi)=0$.
8. Solve the initial value problem $\frac{d r}{d t}+2 t r=r$, given that $r(0)=10$.

Bonus - Solve the logistic equation $\frac{d p}{d t}=0.1 p\left(1-\frac{p}{2000}\right)$, given $p(0)=100$. (Hint: This equation is separable, and its solution involves partial fractions.)

