1. Evaluate
$$\int \frac{x-3}{(x-4)^2(x-1)} dx$$
.

2. Let
$$g(x) = \sqrt{x} \sin x$$
.

a. Approximate $\int_{0}^{4} g(x) dx$ using n = 8 subintervals and the ...

- i. Trapezoid Rule
- ii. Midpoint Rule
- iii. Simpson's Rule

b. Calculate the following to 5 decimal places, using $\int_{0}^{4} g(x) dx \approx 1.768748705$ as the

actual value.

i. E_T ii. E_M iii. E_S

c. Find an upper bound for each of the following without a calculator (See Page 3 of Thursday, October 1^{st} notes.)

i. $|E_T|$ ii. $|E_M|$ iii. $|E_S|$

d. Based on your work in part c., find a lower bound on n so that

- i. $|E_T| \le 0.001$
- ii. $|E_M| \le 0.001$
- iii. $|E_M| \leq 0.001$