1. Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or provide a counterexample.
a. (4 pts) If f is one-to-one, with domain \mathbf{R}, then $f^{-1}(f(6))=6$.
b. (4 pts) If f is one-to-one and differentiable, with domain \mathbf{R}, then $\left(f^{-1}\right)^{\prime}(6)=\frac{1}{f^{\prime}(6)}$.
2. The graph of g is given.
a. (4 pts) Why is g one-to-one?
b. (4 pts) Estimate the value of $g^{-1}(2)$.
c. $(4 \mathrm{pts})$ Sketch the graph of g^{-1}.

a. $(4 \mathrm{pts}) \ln \left(e^{\pi}\right)$
b. $(4 \mathrm{pts}) \cos (\arctan \sqrt{3})$
3. Solve the following equations for x.
a. (4 pts) $\ln \left(1+e^{-x}\right)=3$
b. (4 pts) $\ln (x+1)+\ln (x-1)=1$
4. Differentiate.
a. (4 pts) $f(t)=t^{2} \ln t$
b. (4 pts) $g(x)=3^{m x} \cos (n x)$
c. $(4 \mathrm{pts}) V(t)=\arctan (\arcsin \sqrt{t})$
d. $(4 \mathrm{pts}) \quad y=\frac{\left(x^{2}+1\right)^{4}}{(2 x+1)^{3}(3 x-1)^{5}}$ (Use logarithmic differentiation.)
e. $(4 \mathrm{pts}) y=(\cos (3 x))^{\tan (5 x)}$
5. A bacterial culture contains 200 cells initially and grows at a rate proportional to its size. After half an hour, the population has increased to 360 cells.
a. (4 pts) Find the number of bacteria after t hours.
b. (4 pts) Find the growth rate after 5 hours.
c. (4 pts) When will the population reach 10,000 ?
6. Cobalt- 60 has a half-life of 5.24 years.
a. (4 pts) Find the mass that remains from a $100-\mathrm{mg}$ sample after t years.
b. (4 pts) How long would it take for the mass to decay to 1 mg ?
7. Evaluate the integral.
a. (4 pts) $\int_{0}^{\pi / 2} \frac{\cos x}{1+\sin ^{2} x} d x$
b. (4 pts) $\int \frac{x}{\sqrt{1-x^{4}}} d x$
C. $(4 \mathrm{pts}) \int \ln (\cos x) \tan x d x$
8. (4 pts) If $f(x)=x+x^{2}+e^{x}$, find $\left(f^{-1}\right)^{\prime}(1)$.
9. (4 pts) Find $f^{\prime}(x)$ for $f(x)=\int_{1}^{\sqrt{x}} \frac{e^{t}}{t} d t$
10. (4 pts) If $\tanh x=\frac{3}{5}$, find the value of the other 5 hyperbolic trigonometric functions. This should not require a calculator.
11. (Bonus) (4 pts) Use mathematical induction to show that if $f(x)=x e^{x}$, then $f^{\prime}(x)=(x+n) e^{x}$.
