\qquad

Do all your work and put all your answers WITH your work, CIRCLED, on the white paper provided. All I want on this sheet is your NAME! Spend no more than 2 minutes on any single problem on your first pass through the test. If you don't finish a problem in 2 or 3 minutes, start a fresh sheet of paper for the next problem, and so on.

Formatting should be the same as homework, only you don't need to re-state the question, because the question's attached to your test, and you're under a time control.

1. (15 pts) Evaluate $\int x \ln (\sqrt[5]{x}) d x$
2. (15 pts) Evaluate $\int x \sin (x) d x$
3. Evaluate $\int_{2}^{2 \sqrt{2}} \frac{x}{\sqrt{x^{2}-4}} d x$ in two ways:
a. (10 pts) By u-substitution.
b. (10 pts) By trigonometric substitution.
4. (10 pts) Evaluate $\int \frac{x-23}{x^{2}-x-6} d x$
5. (10 pts) Evaluate $\int \sin (5 x) \cos (3 x) d x$
6. (10 pts) Evaluate $\int \sin ^{4} x \cos ^{3} x d x$

Work up to 15 points’ worth of Bonus, below:
Bonus 1: (10 pts) Evaluate $\int_{\frac{2 \pi}{3}}^{\frac{4 \pi}{3}} \sqrt{1-\sin (x)} d x$. This relates to the question asked in class on Wednesday.

Bonus 2: (5 pts) Evaluate $\int_{e}^{\infty} \frac{d x}{x \ln (x)^{3}}$

Bonus 3: (5 pts) Evaluate $\int_{-1}^{2 \sqrt{2}-3} \frac{x+3}{\sqrt{x^{2}+6 x+5}} d x$

Bonus 4: $(5 \mathrm{pts})$ Evaluate $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{2 x}$
\qquad

I'll give you all of next week to access technology

1. (5 pts) Evaluate $\int_{\frac{2 \pi}{3}}^{\frac{4 \pi}{3}} \sqrt{1-\sin (x)} d x$. This relates to the question asked in class on Wednesday.
2. (5 pts) Use Simpson's rule, with $n=10$ to approximate $\int_{-2}^{6} e^{-x^{2}} d x$. Give an upper bound on the error for this method on this integral.
3. (5 pts) Use a right-endpoint Riemann sums to approximate $\int_{-2}^{6} e^{-x^{2}} d x$, accurate to 4 decimal places.
4. (5 pts) Make 2 arguments for the convergence of the improper integral: $\int_{1}^{\infty} \frac{x^{2} d x}{\sqrt[4]{x^{13}}+x^{2}+1}$.
a. Make a "general-idea" argument, with a rough comparison to an appropriate p-function.
b. Make a more formal argument, with a direct comparison to the appropriate p-function.

Bonus Here are two tricky direct-comparison problems that requre some more advanced analysis. I want your intuition to be strong on these, but I also want you to be at least passingly familiar with more advanced "How big IS it?" techniques. In the sequel (Infinite series in Chapter 11), all you will need is a "limit comparison" and everything acts the way you want it to, if you can just generally see, for instance, that $x^{\frac{8}{3}}-2 x^{2}+11 x^{\frac{1}{3}}$ is eventually dominated by the $x^{\frac{8}{3}}$.

Bonus 1: (5 pts) Make a direct comparison to show that $\int_{2}^{\infty} \frac{d x}{\sqrt{x^{3}}-\sqrt{x}}$ converges. That is, show, explicitly, that the integrand is less than or equal to a p-function whose improper integral is known to converge. This is tricky, because it's hard to make the $-\sqrt{x}$ go away without making the quotient smaller.

Bonus 2: (5 pts) Make a direct comparison to show that $\int_{2}^{\infty} \frac{d x}{\sqrt{x}+x}$ diverges, that is, show, explicitly, that the integrand is greater than or equal to a p-function whose improper integral is known to diverge. This is tricky, because it's hard to make the \sqrt{x} go away without making the quotient bigger.

And yes, I really wanted the following to be in your hands while you took the test. I needed to make sure everyone had both pages while they took the test.

$$
\begin{aligned}
\sin A \cos B & =\frac{1}{2}[\sin (A-B)+\sin (A+B)] \\
\sin A \sin B & =\frac{1}{2}[\cos (A-B)-\cos (A+B)] \\
\cos A \cos B & =\frac{1}{2}[\cos (A-B)+\cos (A+B)]
\end{aligned}
$$

