Answer up to 4 bonus questions for up to 20 bonus points. I suggest starting every problem and spending 2 minutes on it. Start a fresh piece of paper if you don't immediately finish a problem in 2 minutes.

- 1. Compute $\lim_{n\to\infty} a_n$ for each of the following a_n :
 - a. (5 pts) $a_n = \frac{1}{n}$
 - b. (5 pts) $a_n = \frac{\ln(n)}{n^{1/3}}$ Hint: Put this one in the hospital.
 - c. (5 pts) $a_n = \frac{3n^2 n}{\left(n^3 \frac{1}{2}n^2\right)^2}$ Hint : $\left(n^3 + \text{smaller degree terms}\right)^2 = n^6 + \text{smaller degree terms}$.
- 2. State whether or not the series converges. Support your answer by the indicated criteria:
 - a. Let $S = \sum_{n=1}^{\infty} \frac{1}{n}$
 - i. (10 pts) Give this special series a name and what is well-known about this series.
 - ii. (10 pts) Use Integral Test.
 - iii. (5 pts bonus) Use Ratio Test. Hint: Conclude that the Ratio Test is inconclusive.
 - b. Let $S = \sum_{n=1}^{\infty} \frac{\ln(n)}{n^{3/2}}$
 - i. (10 pts) Use Integral Test.
 - ii. (5 pts bonus) Use Direct Comparison. (Not as easy)
 - c. Let $S = \sum_{n=1}^{\infty} \frac{3n^2 n}{\left(n^3 \frac{1}{2}n^2\right)^2}$
 - i. (10 pts) Use Limit Comparison.
 - ii. (5 pts bonus) Use the Integral Test. This is a little more challenging.
 - iii. (5 pts bonus) Use Direct Comparison. This is more challenging.

d. Let
$$S = \sum_{k=1}^{\infty} (-1)^k \frac{1}{k}$$

- i. (10 pts) Use the Alternating Series Test
- 3. Let's delve more deeply into the sum $S = \sum_{k=1}^{\infty} (-1)^k \frac{1}{k}$.
 - a. (5 pts) Find a sufficient number n of terms in the partial sum S_n , so that the error $|R_n| < .001$, using the criterion for alternating series.
- 4. (10 pts) Let $S = \sum_{k=1}^{\infty} \frac{3^k}{k!}$. Show that S converges by any convincing method.
- 5. Let $S = \sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} \frac{1}{k^{3/2}} \approx 2.612375349$
 - a. (5 pts) Find the 4^{th} partial S_4 for S. Round your final result to 4 places.
 - b. (5 pts) Let $f(n) = a_n$ and use the fact that $\int_{n+1}^{\infty} f(x) dx < |R_n| < \int_{n}^{\infty} f(x) dx$, and your result for S_4 in the previous problem, to improve your estimate of the sum S in the previous problem.
- 6. (10 pts) Compute the exact value of the (telescoping) sum $S = \sum_{n=1}^{\infty} \frac{2}{n^2 + 2n} = \sum_{n=1}^{\infty} \left(\frac{1}{n} \frac{1}{n+2} \right)$

Bonus (5 pts bonus) Show that the surface area of a sphere of radius r = 3 is $4\pi r^2 = 4\pi (3)^2 = 36\pi$ by rotating the parametric curve given by the equations $x = 3\cos(t)$, $y = 3\sin(t)$, $0 \le t \le \pi$ about the x-axis. Full credit for writing the integral.