\qquad
Answer up to 4 bonus questions for up to 20 bonus points. I suggest starting every problem and spending 2 minutes on it. Start a fresh piece of paper if you don't immediately finish a problem in 2 minutes.

1. Compute $\lim _{n \rightarrow \infty} a_{n}$ for each of the following a_{n} :
a. (5 pts) $a_{n}=\frac{1}{n}$
b. (5 pts) $a_{n}=\frac{\ln (n)}{n^{1 / 3}}$ Hint: Put this one in the hospital.
c. (5 pts) $a_{n}=\frac{3 n^{2}-n}{\left(n^{3}-\frac{1}{2} n^{2}\right)^{2}} \quad$ Hint $:\left(n^{3}+\text { smaller degree terms }\right)^{2}=n^{6}+$ smaller degree terms.
2. State whether or not the series converges. Support your answer by the indicated criteria:
a. Let $S=\sum_{n=1}^{\infty} \frac{1}{n}$
i. (10 pts) Give this special series a name and what is well-known about this series.
ii. (10 pts) Use Integral Test.
iii. (5 pts bonus) Use Ratio Test. Hint: Conclude that the Ratio Test is inconclusive.
b. Let $S=\sum_{n=1}^{\infty} \frac{\ln (n)}{n^{3 / 2}}$
i. (10 pts) Use Integral Test.
ii. (5 pts bonus) Use Direct Comparison. (Not as easy)
c. Let $S=\sum_{n=1}^{\infty} \frac{3 n^{2}-n}{\left(n^{3}-\frac{1}{2} n^{2}\right)^{2}}$
i. (10 pts) Use Limit Comparison.
ii. (5 pts bonus) Use the Integral Test. This is a little more challenging.
iii. (5 pts bonus) Use Direct Comparison. This is more challenging.
d. Let $S=\sum_{k=1}^{\infty}(-1)^{k} \frac{1}{k}$
i. (10 pts) Use the Alternating Series Test
3. Let's delve more deeply into the sum $S=\sum_{k=1}^{\infty}(-1)^{k} \frac{1}{k}$.
a. (5 pts) Find a sufficient number n of terms in the partial sum S_{n}, so that the error $\left|R_{n}\right|<.001$, using the criterion for alternating series.
4. (10 pts) Let $S=\sum_{k=1}^{\infty} \frac{3^{k}}{k!}$. Show that S converges by any convincing method.
5. Let $S=\sum_{k=1}^{\infty} a_{k}=\sum_{k=1}^{\infty} \frac{1}{k^{3 / 2}} \approx 2.612375349$
a. (5 pts) Find the $4^{\text {th }}$ partial S_{4} for S. Round your final result to 4 places.
b. (5 pts) Let $f(n)=a_{n}$ and use the fact that $\int_{n+1}^{\infty} f(x) d x<\left|R_{n}\right|<\int_{n}^{\infty} f(x) d x$, and your result for S_{4} in the previous problem, to improve your estimate of the sum S in the previous problem.
6. (10 pts) Compute the exact value of the (telescoping) sum $S=\sum_{n=1}^{\infty} \frac{2}{n^{2}+2 n}=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+2}\right)$

Bonus (5 pts bonus) Show that the surface area of a sphere of radius $r=3$ is $4 \pi r^{2}=4 \pi(3)^{2}=36 \pi$ by rotating the parametric curve given by the equations $x=3 \cos (t), y=3 \sin (t), 0 \leq t \leq \pi$ about the x-axis. Full credit for writing the integral.

