1. (10 pts) Consider the curve given by the parametric equations $x = t^2 - 2t$, y = t + 3. Sketch the curve by eliminating the parameter and. Plot enough points (say t = 0,1,2,3) to give you a direction of increasing *t*. Indicate the direction of increasing *t* with arrows.

Name

2. (10 pts) Write the integral that gives the area under the parametric curve given by the equations

$$x = 3\cos(t), y = 3\sin(t), \text{ from } t = \frac{\pi}{6} \text{ to } t = \frac{5\pi}{6}.$$

Bonus (5 pts) Evaluate the integral from #2.*

3. (10 pts) Show that the surface area of a sphere of radius r = 3 is $4\pi r^2 = 4\pi (3)^2 = 36\pi$ by rotating the parametric curve given by the equations $x = 3\cos(t)$, $y = 3\sin(t)$, $0 \le t \le \pi$ about the *x*-axis. Full credit for writing the integral.

Bonus (5 pts) Evaluate the integral.*

- 4. Consider the parametric curve defined ty the parametric equations $x = t^2$, $y = t^3 18t$ a. (10 pts) Find an equation of the tangent line to the parametric curve at t = 3.
 - b. (10 pts) Eliminate the parameter and graph the curve.
 - c. (10 pts) Find all points at which the tangent to the curve is horizontal. Label on graph.
 - d. (10 pts) Find all points at which the tangent to the curve is vertical. Label on graph.
 - e. Bonus (5 pts) Find all *t*-intervals on which the curve is concave down.*
- 5. We analyze the polar curve $r = 1 + 2\cos(2\theta)$.
 - a. (10 pts) Check for symmetry.
 - b. (10 pts) Sketch $r = 1 + 2\cos(2\theta)$ in *Cartesian* coordinates.

c. (10 pts) Solve $\frac{dr}{d\theta} = 0$. This answer should be confirmed by the highs and lows of your Cartesian graph.

d. (10 pts) Write the integral for the area bounded by the curve.

Bonus: (5 pts) Evaluate the integral for part 5d.*

Test 4

Arc Length:
$$\int_{a}^{b} ds$$

Chapter 8: $ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$, when $y = f(x)$ and $ds = \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy$, when $x = g(y)$
Chapter 10: $ds = \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$, when $x = x(t)$ is a function of t and $y = y(t)$ is a function of t .
 $ds = \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} d\theta$, when $r = r(\theta)$ is a function of θ , $x = r\cos\theta$ and $y = r\sin\theta$.

Surface of Revolution: $A = 2\pi \int_{a}^{b} y \, ds$ for rotations about the *x*-axis. $A = 2\pi \int_{a}^{b} x \, ds$ for rotation about the *y*-axis.

1st and 2nd Derivatives for Parametrics:
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
 and $\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$
Power-reduction: $\sin^2(x) = \frac{1 - \cos(2x)}{2}$, $\cos^2(x) = \frac{1 + \cos(2x)}{2}$

Symmetry:

Pole: Replace r by $-r \quad \theta \text{ by } \theta + \pi$ and obtain an equivalent equation Polar Axis: Replace θ by $-\theta$ and obtain an equivalent equation.

The Line $\theta = \frac{\pi}{2}$: Replace θ by $\pi - \theta$ and obtain an equivalent equation.