7.4 - 7.6

MAT 202 Spring, 2013

Name

- 1. Baby Bear's porridge comes out of the pot a blistering 185° Farenheit. The cave is 55° . If his porridge cools to 150° in 1 minute, how long does it take to get *just right* a perfect 120° ?
- 2. Compute the limit.

a.
$$\lim_{x \to 0^+} \left(\frac{3x+1}{x} - \frac{1}{\sin x} \right)$$

c.
$$\lim_{x \to 0} \left(\frac{x-\sin x}{x\tan x} \right)$$

b.
$$\lim_{x \to 0} \left(\frac{3x+1}{x} - \frac{1}{\sin x} \right)$$

3. Evaluate.

a.
$$\csc^{-1}(\sqrt{2})$$

b. $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
c. $\cot\left(\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)$
d. $\lim_{x \to -\infty} (\sec^{-1}(x))$

4. Differentiate
$$y = \cot^{-1}(\sqrt{t-1})$$

- 5. Evaluate $\int \frac{dx}{x\sqrt{5x^2-4}}$.
- 6. Consider the region between the curve $y = \sec^{-1} x$ and the *x*-axis, from x = 1 and x = 2.
 - a. Find the volume of the solid obtained by revolving this region about the *y*-axis.
 - b. Write the integral for the solid obtained by revolving this region about the *x*-axis.
- 7. Find the angle α . α 21 50β
- c. Write the integral for the surface area obtained by revolving this region about the *y*-axis.
- d. Write the integral for the surface area obtained by revolving this region about the *x*-axis.