1. Baby Bear's porridge comes out of the pot a blistering 185° Farenheit. The cave is 55°. If his porridge cools to 150° in 1 minute, how long does it take to get just right - a perfect 120° ?
2. Compute the limit.
a. $\lim _{x \rightarrow 0^{+}}\left(\frac{3 x+1}{x}-\frac{1}{\sin x}\right)$
b. $\lim _{x \rightarrow 0}\left(\frac{3 x+1}{x}-\frac{1}{\sin x}\right)$
c. $\lim _{x \rightarrow 0}\left(\frac{x-\sin x}{x \tan x}\right)$
3. Evaluate.
a. $\quad \csc ^{-1}(\sqrt{2})$
b. $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
c. $\quad \cot \left(\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)$
d. $\quad \lim _{x \rightarrow-\infty}\left(\sec ^{-1}(x)\right)$
4. Differentiate $y=\cot ^{-1}(\sqrt{t-1})$
5. Evaluate $\int \frac{d x}{x \sqrt{5 x^{2}-4}}$.
6. Consider the region between the curve $y=\sec ^{-1} x$ and the x-axis, from $x=1$ and $x=2$.
a. Find the volume of the solid obtained by revolving this region about the y-axis.
b. Write the integral for the solid obtained by revolving this region about the x-axis.
c. Write the integral for the surface area obtained by revolving this region about the y-axis.
d. Write the integral for the surface area obtained by revolving this region about the x-axis.

