9. Set up coordinate axes as shown in the figure. The length of the i th strip is $2 \sqrt{25-\left(y_{i}^{*}\right)^{2}}$ and its area is $2 \sqrt{25-\left(y_{i}^{*}\right)^{2}} \Delta y$. The pressure on this strip is approximately $\delta d_{i}=62.5\left(7-y_{i}^{*}\right)$ and so the force on the strip is approximately $62.5\left(7-y_{i}^{*}\right) 2 \sqrt{25-\left(y_{i}^{*}\right)^{2}} \Delta y$. The total force

$$
\begin{aligned}
F & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 62.5\left(7-y_{i}^{*}\right) 2 \sqrt{25-\left(y_{i}^{*}\right)^{2}} \Delta y=125 \int_{0}^{5}(7-y) \sqrt{25-y^{2}} d y \\
& =125\left\{\int_{0}^{5} 7 \sqrt{25-y^{2}} d y-\int_{0}^{5} y \sqrt{25-y^{2}} d y\right\}=125\left\{7 \int_{0}^{5} \sqrt{25-y^{2}} d y-\left[-\frac{1}{3}\left(25-y^{2}\right)^{3 / 2}\right]_{0}^{5}\right\} \\
& =125\left\{7\left(\frac{1}{4} \pi \cdot 5^{2}\right)+\frac{1}{3}(0-125)\right\}=125\left(\frac{175 \pi}{4}-\frac{125}{3}\right) \approx 11,972 \approx 1.2 \times 10^{4} \mathrm{lb}
\end{aligned}
$$

10. Set up coordinate axes as shown in the figure. For the top half, the length of the i th strip is $2\left(a / \sqrt{2}-y_{i}^{*}\right)$ and its area is $2\left(a / \sqrt{2}-y_{i}^{*}\right) \Delta y$.

The pressure on this strip is approximately $\delta d_{i}=\delta\left(a / \sqrt{2}-y_{i}^{*}\right)$ and so the force on the strip is approximately $2 \delta\left(a / \sqrt{2}-y_{i}^{*}\right)^{2} \Delta y$. The total force

$$
\begin{aligned}
F_{1} & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \delta\left(\frac{a}{\sqrt{2}}-y_{i}^{*}\right)^{2} \Delta y=2 \delta \int_{0}^{a / \sqrt{2}}\left(\frac{a}{\sqrt{2}}-y\right)^{2} d y \\
& =2 \delta\left[-\frac{1}{3}\left(\frac{a}{\sqrt{2}}-y\right)^{3}\right]_{0}^{a / \sqrt{2}}=-\frac{2}{3} \delta\left[0-\left(\frac{a}{\sqrt{2}}\right)^{3}\right]=\frac{2 \delta}{3} \frac{a^{3}}{2 \sqrt{2}}=\frac{\sqrt{2} a^{3} \delta}{6}
\end{aligned}
$$

For the bottom half, the length is $2\left(a / \sqrt{2}+y_{i}^{*}\right)$ and the total force is

$$
\begin{aligned}
F_{2} & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \delta\left(\frac{a}{\sqrt{2}}+y_{i}^{*}\right)\left(\frac{a}{\sqrt{2}}-y_{i}^{*}\right) \Delta y=2 \delta \int_{-a / \sqrt{2}}^{0}\left(\frac{a^{2}}{2}-y^{2}\right) d y=2 \delta\left[\frac{1}{2} a^{2} y-\frac{1}{3} y^{3}\right]_{-a / \sqrt{2}}^{0} \\
& =2 \delta\left[0-\left(-\frac{\sqrt{2} a^{3}}{4}+\frac{\sqrt{2} a^{3}}{12}\right)\right]=2 \delta\left(\frac{\sqrt{2} a^{3}}{6}\right)=\frac{2 \sqrt{2} a^{3} \delta}{6} \quad\left[F_{2}=2 F_{1}\right]
\end{aligned}
$$

Thus, the total force $F=F_{1}+F_{2}=\frac{3 \sqrt{2} a^{3} \delta}{6}=\frac{\sqrt{2} a^{3} \delta}{2}$.
14. $F=\int_{0}^{2} \rho g(10-x) 2 \sqrt{4-x^{2}} d x$

$$
\begin{aligned}
& =20 \rho g \int_{0}^{2} \sqrt{4-x^{2}} d x-\rho g \int_{0}^{2} \sqrt{4-x^{2}} 2 x d x \\
& \left.=20 \rho g \frac{1}{4} \pi\left(2^{2}\right)-\rho g \int_{0}^{4} u^{1 / 2} d u \quad \quad \quad u=4-x^{2}, d u=-2 x d x\right] \\
& =20 \pi \rho g-\frac{2}{3} \rho g\left[u^{3 / 2}\right]_{0}^{4}=20 \pi \rho g-\frac{16}{3} \rho g=\rho g\left(20 \pi-\frac{16}{3}\right) \\
& =(1000)(9.8)\left(20 \pi-\frac{16}{3}\right) \approx 5.63 \times 10^{5} \mathrm{~N}
\end{aligned}
$$

17. (a) The area of a strip is $20 \Delta x$ and the pressure on it is δx_{i}.

$$
\begin{aligned}
F & =\int_{0}^{3} \delta x 20 d x=20 \delta\left[\frac{1}{2} x^{2}\right]_{0}^{3}=20 \delta \cdot \frac{9}{2}=90 \delta \\
& =90(62.5)=5625 \mathrm{lb} \approx 5.63 \times 10^{3} \mathrm{lb}
\end{aligned}
$$

(b) $F=\int_{0}^{9} \delta x 20 d x=20 \delta\left[\frac{1}{2} x^{2}\right]_{0}^{9}=20 \delta \cdot \frac{81}{2}=810 \delta=810(62.5)=50,625 \mathrm{lb} \approx 5.06 \times 10^{4} \mathrm{lb}$.
(c) For the first 3 ft , the length of the side is constant at 40 ft . For $3<x \leq 9$, we can use similar triangles to find the length a :

$$
\begin{aligned}
\frac{a}{40} & =\frac{9-x}{6} \Rightarrow a=40 \cdot \frac{9-x}{6} \\
F & =\int_{0}^{3} \delta x 40 d x+\int_{3}^{9} \delta x(40) \frac{9-x}{6} d x=40 \delta\left[\frac{1}{2} x^{2}\right]_{0}^{3}+\frac{20}{3} \delta \int_{3}^{9}\left(9 x-x^{2}\right) d x=180 \delta+\frac{20}{3} \delta\left[\frac{9}{2} x^{2}-\frac{1}{3} x^{3}\right]_{3}^{9} \\
& =180 \delta+\frac{20}{3} \delta\left[\left(\frac{729}{2}-243\right)-\left(\frac{81}{2}-9\right)\right]=180 \delta+600 \delta=780 \delta=780(62.5)=48,750 \mathrm{lb} \approx 4.88 \times 10^{4} \mathrm{lb}
\end{aligned}
$$

(d) For any right triangle with hypotenuse on the bottom,

$$
\begin{aligned}
& \sin \theta=\frac{\Delta x}{\text { hypotenuse }} \Rightarrow \\
& \text { hypotenuse }=\Delta x \csc \theta=\Delta x \frac{\sqrt{40^{2}+6^{2}}}{6}=\frac{\sqrt{409}}{3} \Delta x .
\end{aligned}
$$

$$
F=\int_{3}^{9} \delta x 20 \frac{\sqrt{409}}{3} d x=\frac{1}{3}(20 \sqrt{409}) \delta\left[\frac{1}{2} x^{2}\right]_{3}^{9}
$$

$$
=\frac{1}{3} \cdot 10 \sqrt{409} \delta(81-9) \approx 303,356 \mathrm{lb} \approx 3.03 \times 10^{5} \mathrm{lb}
$$

24. $M_{x}=\sum_{i=1}^{4} m_{i} y_{i}=6(-2)+5(4)+1(-7)+4(-1)=-3, M_{y}=\sum_{i=1}^{4} m_{i} x_{i}=6(1)+5(3)+1(-3)+4(6)=42$, and $m=\sum_{i=1}^{4} m_{i}=16$, so $\bar{x}=\frac{M_{y}}{m}=\frac{42}{16}=\frac{21}{8}$ and $\bar{y}=\frac{M_{x}}{m}=-\frac{3}{16}$; the center of mass is $(\bar{x}, \bar{y})=\left(\frac{21}{8},-\frac{3}{16}\right)$.
25. The region in the figure is "left-heavy" and "bottom-heavy," so we know $\bar{x}<1$ and $\bar{y}<1.5$, and we might guess that $\bar{x}=0.7$ and $\bar{y}=1.2$.
$3 x+2 y=6 \Leftrightarrow 2 y=6-3 x \quad \Leftrightarrow \quad y=3-\frac{3}{2} x$.
$A=\int_{0}^{2}\left(3-\frac{3}{2} x\right) d x=\left[3 x-\frac{3}{4} x^{2}\right]_{0}^{2}=6-3=3$.

$$
\begin{aligned}
\bar{x} & =\frac{1}{A} \int_{0}^{2} x\left(3-\frac{3}{2} x\right) d x=\frac{1}{3} \int_{0}^{2}\left(3 x-\frac{3}{2} x^{2}\right) d x=\frac{1}{3}\left[\frac{3}{2} x^{2}-\frac{1}{2} x^{3}\right]_{0}^{2} \\
& =\frac{1}{3}(6-4)=\frac{2}{3} .
\end{aligned}
$$

$\bar{y}=\frac{1}{A} \int_{0}^{2} \frac{1}{2}\left(3-\frac{3}{2} x\right)^{2} d x=\frac{1}{3} \cdot \frac{1}{2} \int_{0}^{2}\left(9-9 x+\frac{9}{4} x^{2}\right) d x=\frac{1}{6}\left[9 x-\frac{9}{2} x^{2}+\frac{3}{4} x^{3}\right]_{0}^{2}=\frac{1}{6}(18-18+6)=1$.
Thus, the centroid is $(\bar{x}, \bar{y})=\left(\frac{2}{3}, 1\right)$.

