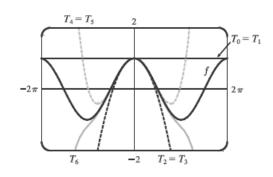
12.11 Solutions

1. (a)

n	$f^{(n)}(x)$	$f^{(n)}(0)$	$T_n(x)$
0	$\cos x$	1	1
1	$-\sin x$	0	1
2	$-\cos x$	-1	$1 - \frac{1}{2}x^2$
3	$\sin x$	0	$1 - \frac{1}{2}x^2$
4	$\cos x$	1	$1 - \frac{1}{2}x^2 + \frac{1}{24}x^4$
5	$-\sin x$	0	$1 - \frac{1}{2}x^2 + \frac{1}{24}x^4$
6	$-\cos x$	-1	$1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 - \frac{1}{720}x^6$



(b)

x	f	$T_0 = T_1$	$T_2 = T_3$	$T_4=T_5$	T_{6}
$\frac{\pi}{4}$	0.7071	1	0.6916	0.7074	0.7071
$\frac{\pi}{2}$	0	1	-0.2337	0.0200	-0.0009
π	-1	1	-3.9348	0.1239	-1.2114

(c) As n increases, $T_n(x)$ is a good approximation to f(x) on a larger and larger interval.

5.

n	$f^{(n)}(x)$	$f^{(n)}(\pi/2)$
0	$\cos x$	0
1	$-\sin x$	-1
2	$-\cos x$	0
3	$\sin x$	1

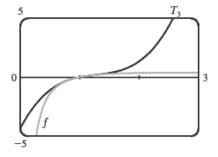
$$T_3(x) = \sum_{n=0}^3 \frac{f^{(n)}(\pi/2)}{n!} (x - \frac{\pi}{2})^n$$
$$= -(x - \frac{\pi}{2}) + \frac{1}{6}(x - \frac{\pi}{2})^3$$

 T_3 T_3 π T_3

8.

n	$f^{(n)}(x)$	$f^{(n)}(1)$
0	$\frac{\ln x}{x}$	0
1	$\frac{1 - \ln x}{x^2}$	1
2	$\frac{-3+2\ln x}{x^3}$	-3
3	$\frac{11 - 6\ln x}{x^4}$	11

$$T_3(x) = \sum_{n=0}^3 \frac{f^{(n)}(1)}{n!} (x-1)^n = (x-1) - \frac{3}{2} (x-1)^2 + \frac{11}{6} (x-1)^3$$

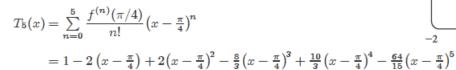


12.11 Solutions

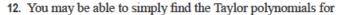
11. You may be able to simply find the Taylor polynomials for

 $f(x) = \cot x$ using your CAS. We will list the values of $f^{(n)}(\pi/4)$ for n = 0 to n = 5.

n	0	1	2	3	4	5
$f^{(n)}(\pi/4)$	1	-2	4	-16	80	-512



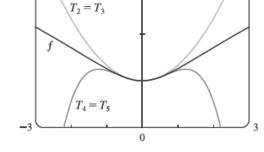
For n=2 to n=5, $T_n(x)$ is the polynomial consisting of all the terms up to and including the $\left(x-\frac{\pi}{4}\right)^n$ term.



 $f(x) = \sqrt[3]{1+x^2}$ using your CAS. We will list the values of $f^{(n)}(0)$ for n=0 to n=5.

n	0	1	2	3	4	5
$f^{(n)}(0)$	1	0	<u>2</u> 3	0	- <u>8</u>	0

$$T_b(x) = \sum_{n=0}^5 \frac{f^{(n)}(0)}{n!} x^n = 1 + \frac{1}{3}x^2 - \frac{1}{9}x^4$$



For n=2 to n=5, $T_n(x)$ is the polynomial consisting of all the terms up to and including the x^n term. Note that $T_2=T_3$ and $T_4=T_5$.

16.

n	$f^{(n)}(x)$	$f^{(n)}(\pi/6)$
0	$\sin x$	1/2
1	$\cos x$	$\sqrt{3}/2$
2	$-\sin x$	-1/2
3	$-\cos x$	$-\sqrt{3}/2$
4	$\sin x$	1/2
5	$\cos x$	

(a) $f(x) = \sin x \approx T_4(x)$

$$= \frac{1}{2} + \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{6} \right) - \frac{1}{4} \left(x - \frac{\pi}{6} \right)^2 - \frac{\sqrt{3}}{12} \left(x - \frac{\pi}{6} \right)^3 + \frac{1}{48} \left(x - \frac{\pi}{6} \right)^4$$

(b) $|R_4(x)| \leq \frac{M}{5!} |x - \frac{\pi}{6}|^5$, where $|f^{(5)}(x)| \leq M$. Now $0 \leq x \leq \frac{\pi}{3} \implies -\frac{\pi}{6} \leq x - \frac{\pi}{6} \leq \frac{\pi}{6} \implies |x - \frac{\pi}{6}| \leq \frac{\pi}{6} \implies |x - \frac{\pi}{6}|^5 \leq \left(\frac{\pi}{6}\right)^5$. Since $|f^{(5)}(x)|$ is decreasing on $[0, \frac{\pi}{3}]$, we can take $M = |f^{(5)}(0)| = \cos 0 = 1$, so $|R_4(x)| \leq \frac{1}{5!} \left(\frac{\pi}{6}\right)^5 \approx 0.000328$.

(c) 0.0004 $y = |R_4(x)|$ $\frac{\pi}{6}$

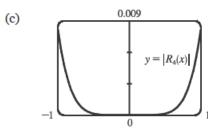
From the graph of $|R_4(x)| = |\sin x - T_4(x)|$, it seems that the error is less than 0.000 297 on $\left[0, \frac{\pi}{3}\right]$.

21.

n	$f^{(n)}(x)$	$f^{(n)}(0)$
0	$x \sin x$	0
1	$\sin x + x \cos x$	0
2	$2\cos x - x\sin x$	2
3	$-3\sin x - x\cos x$	0
4	$-4\cos x + x\sin x$	-4
5	$5\sin x + x\cos x$	

(a)
$$f(x) = x \sin x \approx T_4(x) = \frac{2}{2!}(x-0)^2 + \frac{-4}{4!}(x-0)^4 = x^2 - \frac{1}{6}x^4$$

$$\begin{aligned} \text{(b)} \ |R_4(x)| &\leq \frac{M}{5!} \, |x|^5, \text{ where } \left| \, f^{(5)}(x) \right| \leq M. \text{ Now } -1 \leq x \leq 1 \quad \Rightarrow \\ |x| &\leq 1, \text{ and a graph of } f^{(5)}(x) \text{ shows that } \left| \, f^{(5)}(x) \right| \leq 5 \text{ for } -1 \leq x \leq 1. \end{aligned}$$
 Thus, we can take $M=5$ and get $|R_4(x)| \leq \frac{5}{5!} \cdot 1^5 = \frac{1}{24} = 0.041\overline{6}.$



From the graph of $|R_4(x)| = |x \sin x - T_4(x)|$, it seems that the error is less than 0.0082 on [-1, 1].

- 23. From Exercise 5, $\cos x = -\left(x \frac{\pi}{2}\right) + \frac{1}{6}\left(x \frac{\pi}{2}\right)^3 + R_3(x)$, where $|R_3(x)| \le \frac{M}{4!} \left|x \frac{\pi}{2}\right|^4$ with $\left|f^{(4)}(x)\right| = |\cos x| \le M = 1$. Now $x = 80^\circ = (90^\circ 10^\circ) = \left(\frac{\pi}{2} \frac{\pi}{18}\right) = \frac{4\pi}{9}$ radians, so the error is $|R_3\left(\frac{4\pi}{9}\right)| \le \frac{1}{24}\left(\frac{\pi}{18}\right)^4 \approx 0.000\,039$, which means our estimate would *not* be accurate to five decimal places. However, $T_3 = T_4$, so we can use $|R_4\left(\frac{4\pi}{9}\right)| \le \frac{1}{120}\left(\frac{\pi}{18}\right)^5 \approx 0.000\,001$. Therefore, to five decimal places, $\cos 80^\circ \approx -\left(-\frac{\pi}{18}\right) + \frac{1}{6}\left(-\frac{\pi}{18}\right)^3 \approx 0.17365$.
- 24. From Exercise 16, $\sin x = \frac{1}{2} + \frac{\sqrt{3}}{2} \left(x \frac{\pi}{6} \right) \frac{1}{4} \left(x \frac{\pi}{6} \right)^2 \frac{\sqrt{3}}{12} \left(x \frac{\pi}{6} \right)^3 + \frac{1}{48} \left(x \frac{\pi}{6} \right)^4 + R_4(x)$, where $|R_4(x)| \leq \frac{M}{5!} \left| x \frac{\pi}{6} \right|^5$ with $\left| f^{(5)}(x) \right| = |\cos x| \leq M = 1$. Now $x = 38^\circ = (30^\circ + 8^\circ) = \left(\frac{\pi}{6} + \frac{2\pi}{45} \right)$ radians, so the error is $\left| R_4 \left(\frac{38\pi}{180} \right) \right| \leq \frac{1}{120} \left(\frac{2\pi}{45} \right)^5 \approx 0.000\,000\,44$, which means our estimate will be accurate to five decimal places. Therefore, to five decimal places, $\sin 38^\circ = \frac{1}{2} + \frac{\sqrt{3}}{2} \left(\frac{2\pi}{45} \right) \frac{1}{4} \left(\frac{2\pi}{45} \right)^2 \frac{\sqrt{3}}{12} \left(\frac{2\pi}{45} \right)^3 + \frac{1}{48} \left(\frac{2\pi}{45} \right)^4 \approx 0.61566$.
- 25. All derivatives of e^x are e^x , so $|R_n(x)| \leq \frac{e^x}{(n+1)!} |x|^{n+1}$, where 0 < x < 0.1. Letting x = 0.1, $R_n(0.1) \leq \frac{e^{0.1}}{(n+1)!} (0.1)^{n+1} < 0.00001$, and by trial and error we find that n = 3 satisfies this inequality since $R_3(0.1) < 0.0000046$. Thus, by adding the four terms of the Maclaurin series for e^x corresponding to n = 0, 1, 2, and 3, we can estimate $e^{0.1}$ to within 0.00001. (In fact, this sum is $1.1051\overline{6}$ and $e^{0.1} \approx 1.10517$.)

12.11 Solutions

26. Example 6 in Section 11.9 gives the Maclaurin series for $\ln(1-x)$ as $-\sum_{n=1}^{\infty} \frac{x^n}{n}$ for |x| < 1. Thus, $\ln 1.4 = \ln[1-(-0.4)] = -\sum_{n=1}^{\infty} \frac{(-0.4)^n}{n} = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(0.4)^n}{n}$. Since this is an alternating series, the error is less than the

first neglected term by the Alternating Series Estimation Theorem, and we find that $|a_6| = (0.4)^6/6 \approx 0.0007 < 0.001$. So we need the first five (nonzero) terms of the Maclaurin series for the desired accuracy. (In fact, this sum is approximately

27. $\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \cdots$. By the Alternating Series

Estimation Theorem, the error in the approximation

0.33698 and $\ln 1.4 \approx 0.33647$.)

$$\sin x = x - \frac{1}{3!}x^3$$
 is less than $\left|\frac{1}{5!}x^5\right| < 0.01$ \Leftrightarrow

$$\left|x^{5}\right|<120(0.01) \hspace{3mm}\Leftrightarrow\hspace{3mm}\left|x\right|<\left(1.2\right)^{1/5}pprox1.037.$$
 The curves

$$y = x - \frac{1}{6}x^3$$
 and $y = \sin x - 0.01$ intersect at $x \approx 1.043$, so

the graph confirms our estimate. Since both the sine function



and the given approximation are odd functions, we need to check the estimate only for x > 0. Thus, the desired range of values for x is -1.037 < x < 1.037.

30. $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(4)}{n!} (x-4)^n = \sum_{n=0}^{\infty} \frac{(-1)^n n!}{3^n (n+1) n!} (x-4)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n (n+1)} (x-4)^n$. Now

 $f(5) = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n(n+1)} = \sum_{n=0}^{\infty} (-1)^n b_n$ is the sum of an alternating series that satisfies (i) $b_{n+1} \leq b_n$ and

(ii) $\lim_{n\to\infty}b_n=0$, so by the Alternating Series Estimation Theorem, $|R_5(5)|=|f(5)-T_5(5)|\leq b_6$, and

 $b_6 = \frac{1}{3^6(7)} = \frac{1}{5103} \approx 0.000196 < 0.0002$; that is, the fifth-degree Taylor polynomial approximates f(5) with error less than 0.0002.