12.11 Solutions

1. (@)
n | f™(2) [ £f(0) Tn() Ty=T, )
0 CcOs T 1 1 ( ) Ty=T,
1 —sinx 0 1 Z
2| —cosx —1 1— 122 /\ Jl/
- =2 2w
3 sin 0 1-— %xz \/] ‘:‘1‘\/
4 CcOs T 1 1— %xz + 2—149:4 :l" 5“.'i
5 | —sinx 0 1—%;>:2+2—14:r:4 . ! i J
1.2 1.4 1 _6 Ty -2 =T
6 | —cosx -1 1—51' +55x — g
(b)
x f Tu = Tl Tg = Tg T4 = T5 Ts
< 0.7071 1 0.6916 0.7074 0.7071
< 0 1 —0.2337 0.0200 —0.0009
T —1 1 —3.9348 0.1239 —1.2114
(c) As n mcreases, T, (x) 1s a good approximation to f(x) on a larger and larger mterval.
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12.11 Solutions

11. You may be able to simply find the Taylor polynomuials for Ti st
5
f(z) = cot z using your CAS. We will list the values of f{™)(x/4) T, (- y \
forn=0ton =5. I
\ T,
n 0 1 2 3 4 5

fx/a) | 1| =2 | 4| —16 | 80 | —512 T,

T
5 ™) (x/4) n \\ T !
Ta[.r:}=27f(x—%} TN\ Ja )
-2

n=0 n!

n|=& -
[

s 42 a3 o\ a5
T R SN TP TTARE R A

16

Forn = 2ton = 5, T,,(z) 1s the polynomial consisting of all the terms up to and including the (z — $)" term.

12. You may be able to simply find the Taylor polynonuals for p 3 N
f(z) = §/T+ =2 using your CAS. We will list the values of f(")(0) =1,

forn =0ton =5

n oj1fz2]3| 4|5
Moy lrlol 2o -2 0
> 70 . 21,4 -3
TS(I}ZHEBTJ: =142z — 2o :

Forn =2ton =5, T,,(x) is the polynomial consisting of all the terms up to and including the =™ term Note that T, = T3
andT4 = T5_

16. (a) f(z) =sinz = Ty(z)
(n) (m)y_
T f (.I’.') f (fi .'fﬁ)
! 1 3 T 1 a2 3 3 1 a3
: =3+%¥@E@-3) 33 - Fl-3) +xl=-3)
0 sin x 1/2
M
1| ecosz Vv3/2 ) |R4[3:)|Eﬁ}x—ﬂﬁ,whemlfm(r}‘ <M. Now0<z<ZI =
2 | —sinz —1/2 ) o . e
. —5<z—5<% = |p—F|<F = [z-F[ <(5) Since
3| —coszx —v3/2
(5) i i = M= f® = =
4l sins 12 f (x)|15decreasmg0n[0,3],wecantakew |_f ((}j| cos0 =1,
3 COS T < i I ’ a
s0 | Ra(z)| < 7 (s) 0.000 328.
(c) 00004 From the graph of | Rs(x)| = |sin z — Ta(z)|, it seems that the
error 15 less than 0.000 297 on [0, 5].
y = |Ry(x)]|
x
0 - 3
[
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12.11 Solutions

21. (@) f(x) =xsine = Ty(zx) = %{:x —-0)*+ TT?{:J: —0)* =2 — éx‘l
7 Fm (z) f(ﬂ)((}} ! !
0 rsinax 0 5
(®) |Ra(=)| < ,where | fO) ()| < M. Now—1<z <1 =
1 sinx + xcosx 0
2| 2cosz—asinz | 2 [+/ < 1, and a graph of £ () shows that | /@ (z)| < 5for—1 <z <1
3 | —3sinx — 0 - —
smE T meess Thus, we can take M/ = 5 and get | Rs(z)| < i‘ =L _oo0aiE
4| —4dcosx + xrsinx —4 9! 24
3 dsin + x cos x
© —
From the graph of | Ra(x)| = |z sin z — Tu(z)|, it seems that the
=|Ryx)|
error is less than 0 0082 on [—1, 1]
-1 0 1

23. From Exercise 5, cosx = — (x

~3) +3(=— ) + Ra(e), where |Ra(2)| < Gy |= — [ wi

f(“}(x)| =|cosz| < M = 1. Now = = 80° = (90° — 10°) = (5 — {5) = - radians, so the error is

18

|Rs ()| < & (&)" ~ 0.000 039, which means our estimate would not be accurate to five decimal places. However,

T; = Ts,sowe canuse | R, ()| < ﬁ(if =2 0.000 001 Therefore, to five decimal places,

[

cos 80° ~ — (—5) + l(——:]

24. From Exercise 16, sinx = 3 +

[Rae)| < 4 |
so the error is | R4 (£2)| < 120

=~ 0.17365.

L(e—5) 18~ F 3 +E D+ RuCe), viher

13

z—x° mthlftﬁ)(x]l—lcosﬂ < M = 1. Now z = 38° = (30° + 8°) = (Z + 2% radians,

s ) 7= 0.000 000 44, which means our estimate will be accurate to five decimal places.

Therefore, to five decimal places, sin 38° = 2 + %2 (22) — 1(22)’ — ¥2(22)" + L (2&)" ~ 0.61566.

25. All derivatives of e® are e®, s0 | R, (x)| <

El‘l

(n+1)!

R.(01) <

R3(0.1) < 0.0000046. Thus, by adding the four terms of the Maclaurin series for e™ corresponding ton =0, 1, 2, and 3

we can estimate ¢! to within 0

456

||™*!, where 0 < = < 0.1. Letting = = 0.1,

CES

(0.1)"*! < 0.00001, and by trial and error we find that n — 3 satisfies this inequality since

?

.00001. (In fact, this sum is 1.1051 and ¢® ~ 1.10517.)

Page 3




12.11 Solutions

T

26. Example 6 m Section 11.9 gives the Maclaunn series for In(1 — =) as — 3~ Z_ for || < 1. Thus,
T

n=

Inl4=In[l—(—04)]=—-3 (Z04)" _ 3 (—1)““&. Since this 1s an alternating series, the error is less than the
n=1 (i n=1 e

first neglected term by the Alternating Series Estimation Theorem, and we find that |ag| = (0.4)°/6 =~ 0.0007 < 0.001. So
we need the first five (nonzero) terms of the Maclaurin series for the desired accuracy. (In fact, this sum 1s approximately
0.33698 and In 1 4 == 0.33647)

_ 1, 1, . . 0o
27. sinz ==z — oz +Ex — - ... By the Alternating Series - .

Estimation Theorem, the error in the approximation e lp

. 1 5. 1 &
sinz =z — oz is less than £ <001 =

|2®| < 120(0.01) & |z| < (1.2)"/® ~ 1.037. The curves
y =z — 127 and y = sinz — 0.01 intersect at = ~ 1.043, so y=sinx =001

¢ 0.90: ' /12

the praph confirms our estimate. Since both the sine function
and the given approximation are odd functions, we need to check the estimate only for = > 0. Thus, the desired range of
values for = is —1.037 < = < 1.037.

oo (n) oo —1Y"* n! oo 13"

5 =3 % — 3 (=1)"b,, is the sum of an altemating series that satisfies (i) bn41 < b, and
=0 " =0

(i) lim b, = 0, so by the Alternating Series Estimation Theorem, |R5(5)| = |f(5) — Ts(5)| < bg, and

be = % T 0.000196 < 0.0002 ; that is, the fifth-depree Taylor polynomial approximates f(5) with error less
i
than 0.0002.

Page 4




