4. Since $f^{(n)}(4)=\frac{(-1)^{n} n!}{3^{n}(n+1)}$, Equation 6 gives the Taylor series $\sum_{n=0}^{\infty} \frac{f^{(n)}(4)}{n!}(x-4)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n} n!}{3^{n}(n+1) n!}(x-4)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n}(n+1)}(x-4)^{n}$, which is the Taylor series for f centered at 4. Apply the Ratio Test to find the radius of convergence R.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(x-4)^{n+1}}{3^{n+1}(n+2)} \cdot \frac{3^{n}(n+1)}{(-1)^{n}(x-4)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)(x-4)(n+1)}{3(n+2)}\right| \\
& =\frac{1}{3}|x-4| \lim _{n \rightarrow \infty} \frac{n+1}{n+2}=\frac{1}{3}|x-4|
\end{aligned}
$$

For convergence, $\frac{1}{3}|x-4|<1 \Leftrightarrow|x-4|<3$, so $R=3$.
5.

n	$f^{(n)}(x)$	$f^{(n)}(0)$
0	$(1-x)^{-2}$	1
1	$2(1-x)^{-3}$	2
2	$6(1-x)^{-4}$	6
3	$24(1-x)^{-5}$	24
4	$120(1-x)^{-6}$	120
\vdots	\vdots	\vdots

$$
\begin{aligned}
(1-x)^{-2} & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}+\cdots \\
& =1+2 x+\frac{6}{2} x^{2}+\frac{24}{6} x^{3}+\frac{120}{24} x^{4}+\cdots \\
& =1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+\cdots=\sum_{n=0}^{\infty}(n+1) x^{n} \\
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(n+2) x^{n+1}}{(n+1) x^{n}}\right|=|x| \lim _{n \rightarrow \infty} \frac{n+2}{n+1}=|x|(1)=|x|<1
\end{aligned}
$$

for convergence, so $R=1$.
10.

n	$f^{(n)}(x)$	$f^{(n)}(0)$
0	$x e^{x}$	0
1	$(x+1) e^{x}$	1
2	$(x+2) e^{x}$	2
3	$(x+3) e^{x}$	3
\vdots	\vdots	\vdots

$$
\begin{aligned}
& x e^{x}=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{n}{n!} x^{n}=\sum_{n=1}^{\infty} \frac{n}{n!} x^{n}=\sum_{n=1}^{\infty} \frac{x^{n}}{(n-1)!} . \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left[\frac{|x|^{n+1}}{n!} \cdot \frac{(n-1)!}{|x|^{n}}\right]=\lim _{n \rightarrow \infty} \frac{|x|}{n}=0<1 \text { for all } x \\
& \text { so } R=\infty .
\end{aligned}
$$

11.

n	$f^{(n)}(x)$	$f^{(n)}(0)$
0	$\sinh x$	0
1	$\cosh x$	1
2	$\sinh x$	0
3	$\cosh x$	1
4	$\sinh x$	0
\vdots	\vdots	\vdots

$f^{(n)}(0)=\left\{\begin{array}{ll}0 & \text { if } n \text { is even } \\ 1 & \text { if } n \text { is odd }\end{array} \quad\right.$ so $\sinh x=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}$.
Use the Ratio Test to find R. If $a_{n}=\frac{x^{2 n+1}}{(2 n+1)!}$, then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{x^{2 n+3}}{(2 n+3)!} \cdot \frac{(2 n+1)!}{x^{2 n+1}}\right|=x^{2} \cdot \lim _{n \rightarrow \infty} \frac{1}{(2 n+3)(2 n+2)} \\
& =0<1 \quad \text { for all } x, \text { so } R=\infty
\end{aligned}
$$

13.

n	$f^{(n)}(x)$	$f^{(n)}(1)$
0	$x^{4}-3 x^{2}+1$	-1
1	$4 x^{3}-6 x$	-2
2	$12 x^{2}-6$	6
3	$24 x$	24
4	24	24
5	0	0
6	0	0
\vdots	\vdots	\vdots

18.

n	$f^{(n)}(x)$	$f^{(n)}(\pi / \mathbf{2})$
0	$\sin x$	1
1	$\cos x$	0
2	$-\sin x$	-1
3	$-\cos x$	0
4	$\sin x$	1
\vdots	\vdots	\vdots

$f^{(n)}(x)=0$ for $n \geq 5$, so f has a finite series expansion about $a=1$.

$$
\begin{aligned}
f(x) & =x^{4}-3 x^{2}+1=\sum_{n=0}^{4} \frac{f^{(n)}(1)}{n!}(x-1)^{n} \\
& =\frac{-1}{0!}(x-1)^{0}+\frac{-2}{1!}(x-1)^{1}+\frac{6}{2!}(x-1)^{2}+\frac{24}{3!}(x-1)^{3}+\frac{24}{4!}(x-1)^{4} \\
& =-1-2(x-1)+3(x-1)^{2}+4(x-1)^{3}+(x-1)^{4}
\end{aligned}
$$

A finite series converges for all x, so $R=\infty$.

$$
\begin{aligned}
\sin x & =\sum_{k=0}^{\infty} \frac{f^{(k)}(\pi / 2)}{k!}\left(x-\frac{\pi}{2}\right)^{k} \\
& =1-\frac{(x-\pi / 2)^{2}}{2!}+\frac{(x-\pi / 2)^{4}}{4!}-\frac{(x-\pi / 2)^{6}}{6!}+\cdots \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-\pi / 2)^{2 n}}{(2 n)!}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left[\frac{|x-\pi / 2|^{2 n+2}}{(2 n+2)!} \cdot \frac{(2 n)!}{|x-\pi / 2|^{2 n}}\right]
$$

$$
=\lim _{n \rightarrow \infty} \frac{|x-\pi / 2|^{2}}{(2 n+2)(2 n+1)}=0<1 \quad \text { for all } x \text {, so } R=\infty
$$

22. If $f(x)=\sin x$, then $f^{(n+1)}(x)= \pm \sin x$ or $\pm \cos x$. In each case, $\left|f^{(n+1)}(x)\right| \leq 1$, so by Formula 9 with $a=0$ and $M=1,\left|R_{n}(x)\right| \leq \frac{1}{(n+1)!}\left|x-\frac{\pi}{2}\right|^{n+1}$. Thus, $\left|R_{n}(x)\right| \rightarrow 0$ as $n \rightarrow \infty$ by Equation 10 . So $\lim _{n \rightarrow \infty} R_{n}(x)=0$ and, by Theorem 8, the series in Exercise 18 represents $\sin x$ for all x.
23. $\frac{1}{(1+x)^{4}}=(1+x)^{-4}=\sum_{n=0}^{\infty}\binom{-4}{n} x^{n}$. The binomial coefficient is

$$
\begin{aligned}
\binom{-4}{n} & =\frac{(-4)(-5)(-6) \cdots \cdots(-4-n+1)}{n!}=\frac{(-4)(-5)(-6) \cdots \cdots[-(n+3)]}{n!} \\
& =\frac{(-1)^{n} \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdots \cdots(n+1)(n+2)(n+3)}{2 \cdot 3 \cdot n!}=\frac{(-1)^{n}(n+1)(n+2)(n+3)}{6}
\end{aligned}
$$

Thus, $\frac{1}{(1+x)^{4}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(n+1)(n+2)(n+3)}{6} x^{n}$ for $|x|<1$, so $R=1$.
29. $\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \Rightarrow f(x)=\sin (\pi x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{(\pi x)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{\pi^{2 n+1}}{(2 n+1)!} x^{2 n+1}, R=\infty$.
34. $\tan ^{-1} x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \Rightarrow \tan ^{-1}\left(x^{3}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x^{3}\right)^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{6 n+3}}{2 n+1}$, so

$$
x^{2} \tan ^{-1}\left(x^{3}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1} x^{6 n+5} ;\left|x^{3}\right|<1 \Leftrightarrow|x|<1, \text { so } R=1
$$

35. We must write the binomial in the form (1+ expression), so we'll factor out a 4.

$$
\begin{aligned}
\frac{x}{\sqrt{4+x^{2}}} & =\frac{x}{\sqrt{4\left(1+x^{2} / 4\right)}}=\frac{x}{2 \sqrt{1+x^{2} / 4}}=\frac{x}{2}\left(1+\frac{x^{2}}{4}\right)^{-1 / 2}=\frac{x}{2} \sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n}\left(\frac{x^{2}}{4}\right)^{n} \\
& =\frac{x}{2}\left[1+\left(-\frac{1}{2}\right) \frac{x^{2}}{4}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left(\frac{x^{2}}{4}\right)^{2}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}\left(\frac{x^{2}}{4}\right)^{3}+\cdots\right] \\
& =\frac{x}{2}+\frac{x}{2} \sum_{n=1}^{\infty}(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n} \cdot 4^{n} \cdot n!} x^{2 n} \\
& =\frac{x}{2}+\sum_{n=1}^{\infty}(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{n!2^{3 n+1}} x^{2 n+1} \text { and } \frac{x^{2}}{4}<1 \Leftrightarrow \frac{|x|}{2}<1 \Leftrightarrow|x|<2, \quad \text { so } R=2 .
\end{aligned}
$$

