## 12.7 Solutions

- 1.  $\frac{1}{n+3^n} < \frac{1}{3^n} = \left(\frac{1}{3}\right)^n$  for all  $n \ge 1$ .  $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$  is a convergent geometric series  $\left[|r| = \frac{1}{3} < 1\right]$ , so  $\sum_{n=1}^{\infty} \frac{1}{n+3^n}$  converges by the Comparison Test.
- 3.  $\lim_{n\to\infty} |a_n| = \lim_{n\to\infty} \frac{n}{n+2} = 1$ , so  $\lim_{n\to\infty} a_n = \lim_{n\to\infty} (-1)^n \frac{n}{n+2}$  does not exist. Thus, the series  $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+2}$  diverges by the Test for Divergence.
- 5.  $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^2 \, 2^n}{(-5)^{n+1}} \cdot \frac{(-5)^n}{n^2 \, 2^{n-1}} \right| = \lim_{n \to \infty} \frac{2(n+1)^2}{5n^2} = \frac{2}{5} \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^2 = \frac{2}{5} (1) = \frac{2}{5} < 1$ , so the series  $\sum_{n=1}^{\infty} \frac{n^2 \, 2^{n-1}}{(-5)^n}$  converges by the Ratio Test.
- 7. Let  $f(x) = \frac{1}{x\sqrt{\ln x}}$ . Then f is positive, continuous, and decreasing on  $[2, \infty)$ , so we can apply the Integral Test.

Since 
$$\int \frac{1}{x\sqrt{\ln x}} dx$$
  $\begin{bmatrix} u = \ln x, \\ du = dx/x \end{bmatrix} = \int u^{-1/2} du = 2u^{1/2} + C = 2\sqrt{\ln x} + C$ , we find

$$\int_{2}^{\infty} \frac{dx}{x\sqrt{\ln x}} = \lim_{t \to \infty} \int_{2}^{t} \frac{dx}{x\sqrt{\ln x}} = \lim_{t \to \infty} \left[2\sqrt{\ln x}\right]_{2}^{t} = \lim_{t \to \infty} \left(2\sqrt{\ln t} - 2\sqrt{\ln 2}\right) = \infty.$$
 Since the integral diverges, the given series 
$$\sum_{t=0}^{\infty} \frac{1}{x\sqrt{\ln x}}$$
 diverges.

9.  $\sum_{k=1}^{\infty} k^2 e^{-k} = \sum_{k=1}^{\infty} \frac{k^2}{e^k}$ . Using the Ratio Test, we get

$$\lim_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|=\lim_{k\to\infty}\left|\frac{(k+1)^2}{e^{k+1}}\cdot\frac{e^k}{k^2}\right|=\lim_{k\to\infty}\left[\left(\frac{k+1}{k}\right)^2\cdot\frac{1}{e}\right]=1^2\cdot\frac{1}{e}=\frac{1}{e}<1, \text{ so the series converges.}$$

- 11.  $b_n = \frac{1}{n \ln n} > 0$  for  $n \ge 2$ ,  $\{b_n\}$  is decreasing, and  $\lim_{n \to \infty} b_n = 0$ , so the given series  $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n \ln n}$  converges by the Alternating Series Test.
- 13.  $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{3^{n+1} (n+1)^2}{(n+1)!} \cdot \frac{n!}{3^n n^2} \right| = \lim_{n \to \infty} \frac{3(n+1)^2}{(n+1)n^2} = 3 \lim_{n \to \infty} \frac{n+1}{n^2} = 0 < 1$ , so the series  $\sum_{n=1}^{\infty} \frac{3^n n^2}{n!}$  converges by the Ratio Test.
- 15.  $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!}{2 \cdot 5 \cdot 8 \cdot \dots \cdot (3n+2)[3(n+1)+2]} \cdot \frac{2 \cdot 5 \cdot 8 \cdot \dots \cdot (3n+2)}{n!} \right| = \lim_{n \to \infty} \frac{n+1}{3n+5} = \frac{1}{3} < 1,$  so the series  $\sum_{n=0}^{\infty} \frac{n!}{2 \cdot 5 \cdot 8 \cdot \dots \cdot (3n+2)}$  converges by the Ratio Test.
- 17.  $\lim_{n\to\infty} 2^{1/n} = 2^0 = 1$ , so  $\lim_{n\to\infty} (-1)^n \ 2^{1/n}$  does not exist and the series  $\sum_{n=1}^{\infty} (-1)^n 2^{1/n}$  diverges by the Test for Divergence.

## 12.7 Solutions

19. Let  $f(x)=\frac{\ln x}{\sqrt{x}}$ . Then  $f'(x)=\frac{2-\ln x}{2x^{3/2}}<0$  when  $\ln x>2$  or  $x>e^2$ , so  $\frac{\ln n}{\sqrt{n}}$  is decreasing for  $n>e^2$ .

By l'Hospital's Rule,  $\lim_{n\to\infty}\frac{\ln n}{\sqrt{n}}=\lim_{n\to\infty}\frac{1/n}{1/\left(2\sqrt{n}\right)}=\lim_{n\to\infty}\frac{2}{\sqrt{n}}=0$ , so the series  $\sum_{n=1}^{\infty}(-1)^n\frac{\ln n}{\sqrt{n}}$  converges by the

Alternating Series Test.

- 21.  $\sum_{n=1}^{\infty} \frac{(-2)^{2n}}{n^n} = \sum_{n=1}^{\infty} \left(\frac{4}{n}\right)^n$ .  $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \frac{4}{n} = 0 < 1$ , so the given series is absolutely convergent by the Root Test.
- 23. Using the Limit Comparison Test with  $a_n = \tan\left(\frac{1}{n}\right)$  and  $b_n = \frac{1}{n}$ , we have

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\tan(1/n)}{1/n} = \lim_{x \to \infty} \frac{\tan(1/x)}{1/x} \stackrel{\text{H}}{=} \lim_{x \to \infty} \frac{\sec^2(1/x) \cdot (-1/x^2)}{-1/x^2} = \lim_{x \to \infty} \sec^2(1/x) = 1^2 = 1 > 0. \text{ Since } \frac{\sin(1/x)}{1/x} = \frac{\sin(1/x)}{1/x} =$$

 $\sum_{n=1}^{\infty} b_n$  is the divergent harmonic series,  $\sum_{n=1}^{\infty} a_n$  is also divergent.

- 25. Use the Ratio Test.  $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!}{e^{(n+1)^2}} \cdot \frac{e^{n^2}}{n!} \right| = \lim_{n \to \infty} \frac{(n+1)n! \cdot e^{n^2}}{e^{n^2+2n+1}n!} = \lim_{n \to \infty} \frac{n+1}{e^{2n+1}} = 0 < 1$ , so  $\sum_{n=1}^{\infty} \frac{n!}{e^{n^2}}$  converges.
- 27.  $\int_{2}^{\infty} \frac{\ln x}{x^{2}} dx = \lim_{t \to \infty} \left[ -\frac{\ln x}{x} \frac{1}{x} \right]_{1}^{t} \quad \text{[using integration by parts]} \stackrel{\text{H}}{=} 1. \text{ So } \sum_{n=1}^{\infty} \frac{\ln n}{n^{2}} \text{ converges by the Integral Test, and since } \\ \frac{k \ln k}{(k+1)^{3}} < \frac{k \ln k}{k^{3}} = \frac{\ln k}{k^{2}}, \text{ the given series } \sum_{k=1}^{\infty} \frac{k \ln k}{(k+1)^{3}} \text{ converges by the Comparison Test.}$
- 29.  $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^n \frac{1}{\cosh n} = \sum_{n=1}^{\infty} (-1)^n b_n$ . Now  $b_n = \frac{1}{\cosh n} > 0$ ,  $\{b_n\}$  is decreasing, and  $\lim_{n \to \infty} b_n = 0$ , so the series converges by the Alternating Series Test.

Or: Write  $\frac{1}{\cosh n} = \frac{2}{e^n + e^{-n}} < \frac{2}{e^n}$  and  $\sum_{n=1}^{\infty} \frac{1}{e^n}$  is a convergent geometric series, so  $\sum_{n=1}^{\infty} \frac{1}{\cosh n}$  is convergent by the

Comparison Test. So  $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\cosh n}$  is absolutely convergent and therefore convergent.

- 31.  $\lim_{k\to\infty} a_k = \lim_{k\to\infty} \frac{5^k}{3^k+4^k} = [\text{divide by } 4^k] \quad \lim_{k\to\infty} \frac{(5/4)^k}{(3/4)^k+1} = \infty \text{ since } \lim_{k\to\infty} \left(\frac{3}{4}\right)^k = 0 \text{ and } \lim_{k\to\infty} \left(\frac{5}{4}\right)^k = \infty.$ Thus,  $\sum_{k=0}^{\infty} \frac{5^k}{3^k+4^k}$  diverges by the Test for Divergence.
- 33. Let  $a_n = \frac{\sin(1/n)}{\sqrt{n}}$  and  $b_n = \frac{1}{n\sqrt{n}}$ . Then  $\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{\sin(1/n)}{1/n} = 1 > 0$ , so  $\sum_{n=1}^{\infty} \frac{\sin(1/n)}{\sqrt{n}}$  converges by limit

comparison with the convergent p-series  $\sum\limits_{n=1}^{\infty} \frac{1}{n^{3/2}} \quad [p=3/2>1].$