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1s absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute convergence is the same as
convergence.
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23, lim 3/|an| = lim (1+—) = lim (1+—) = e > 1 (by Equation 3.6.6), so the series (1—0——)
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diverges by the Root Test.

25. Use the Ratio Test with the series
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so the given series 1s absolutely convergent and therefore convergent.
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30. By the recursive definition, lim = = lim H% = 0 < 1, so the series converges absolutely by the Ratio Test.
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(b) The error in vsing s,, as an approximation to the sum is R,, = IG“—H% = o 12}2“+1 . Wewant R, < 0.00005 <
m < 0.00005 <= (n+ 1)2" > 20,000. To find such an » we can use trial and error or a graph. We calculate

11
114+ 1)2'1 = 24 576,50 5311 = L == 0.693109 1s within 000005 of the actual sum.
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