## 12.4 Solutions

- (a) We cannot say anything about ∑ a<sub>n</sub>. If a<sub>n</sub> > b<sub>n</sub> for all n and ∑ b<sub>n</sub> is convergent, then ∑ a<sub>n</sub> could be convergent or divergent. (See the note after Example 2.)
  - (b) If  $a_n < b_n$  for all n, then  $\sum a_n$  is convergent. [This is part (i) of the Comparison Test.]
- 2. (a) If  $a_n > b_n$  for all n, then  $\sum a_n$  is divergent. [This is part (ii) of the Comparison Test.]
  - (b) We cannot say anything about  $\sum a_n$ . If  $a_n < b_n$  for all n and  $\sum b_n$  is divergent, then  $\sum a_n$  could be convergent or divergent.
- 3.  $\frac{n}{2n^3+1} < \frac{n}{2n^3} = \frac{1}{2n^2} < \frac{1}{n^2}$  for all  $n \ge 1$ , so  $\sum_{n=1}^{\infty} \frac{n}{2n^3+1}$  converges by comparison with  $\sum_{n=1}^{\infty} \frac{1}{n^2}$ , which converges because it is a p-series with p=2>1.
- 4.  $\frac{n^3}{n^4-1} > \frac{n^3}{n^4} = \frac{1}{n}$  for all  $n \ge 2$ , so  $\sum_{n=2}^{\infty} \frac{n^3}{n^4-1}$  diverges by comparison with  $\sum_{n=2}^{\infty} \frac{1}{n}$ , which diverges because it is a p-series with  $p=1 \le 1$  (the harmonic series).
- 12.  $\frac{1+\sin n}{10^n} \le \frac{2}{10^n}$  and  $\sum_{n=0}^{\infty} \frac{2}{10^n} = 2\sum_{n=0}^{\infty} \left(\frac{1}{10}\right)^n$ , so the given series converges by comparison with a constant multiple of a convergent geometric series.
- 25. If  $a_n = \frac{1+n+n^2}{\sqrt{1+n^2+n^6}}$  and  $b_n = \frac{1}{n}$ , then  $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n+n^2+n^3}{\sqrt{1+n^2+n^6}} = \lim_{n \to \infty} \frac{1/n^2+1/n+1}{\sqrt{1/n^6+1/n^4+1}} = 1 > 0$ , so  $\sum_{n=1}^{\infty} \frac{1+n+n^2}{\sqrt{1+n^2+n^6}}$  diverges by the Limit Comparison Test with the divergent harmonic series  $\sum_{n=1}^{\infty} \frac{1}{n}$ .
- 26. If  $a_n = \frac{n+5}{\sqrt[3]{n^7+n^2}}$  and  $b_n = \frac{n}{\sqrt[3]{n^7}} = \frac{n}{n^{7/3}} = \frac{1}{n^{4/3}}$ , then  $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^{7/3} + 5n^{4/3}}{(n^7 + n^2)^{1/3}} \cdot \frac{n^{-7/3}}{n^{-7/3}} = \lim_{n \to \infty} \frac{1 + 5/n}{\left[\left(n^7 + n^2\right)/n^7\right]^{1/3}} = \lim_{n \to \infty} \frac{1 + 5/n}{(1 + 1/n^5)^{1/3}} = \frac{1 + 0}{(1 + 0)^{1/3}} = 1 > 0,$  so  $\sum_{n=1}^{\infty} \frac{n+5}{\sqrt[3]{n^7+n^2}}$  converges by the Limit Comparison Test with the convergent p-series  $\sum_{n=1}^{\infty} \frac{1}{n^{4/3}}$ .
- 27. Use the Limit Comparison Test with  $a_n = \left(1 + \frac{1}{n}\right)^2 e^{-n}$  and  $b_n = e^{-n}$ :  $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^2 = 1 > 0$ . Since  $\sum_{n=1}^{\infty} e^{-n} = \sum_{n=1}^{\infty} \frac{1}{e^n}$  is a convergent geometric series  $\left[|r| = \frac{1}{e} < 1\right]$ , the series  $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^2 e^{-n}$  also converges.

31. Use the Limit Comparison Test with  $a_n = \sin\left(\frac{1}{n}\right)$  and  $b_n = \frac{1}{n}$ . Then  $\sum a_n$  and  $\sum b_n$  are series with positive terms and

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{\sin(1/n)}{1/n}=\lim_{\theta\to0}\frac{\sin\theta}{\theta}=1>0. \text{ Since }\sum_{n=1}^\infty b_n \text{ is the divergent harmonic series,}$$

 $\sum_{n=1}^{\infty} \sin(1/n)$  also diverges. [Note that we could also use l'Hospital's Rule to evaluate the limit.

$$\lim_{x \to \infty} \frac{\sin(1/x)}{1/x} \stackrel{\mathrm{H}}{=} \lim_{x \to \infty} \frac{\cos(1/x) \cdot \left(-1/x^2\right)}{-1/x^2} = \lim_{x \to \infty} \cos\frac{1}{x} = \cos 0 = 1.$$

32. Use the Limit Comparison Test with  $a_n = \frac{1}{n^{1+1/n}}$  and  $b_n = \frac{1}{n}$ .  $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n}{n^{1+1/n}} = \lim_{n \to \infty} \frac{1}{n^{1/n}} = 1$ 

 $\left[\text{since } \lim_{x \to \infty} x^{1/x} = 1 \text{ by l'Hospital's Rule}\right], \text{ so } \sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges} \quad \left[\text{harmonic series}\right] \quad \Rightarrow \quad \sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}} \text{ diverges}.$ 

35.  $\sum_{n=1}^{10} \frac{1}{1+2^n} = \frac{1}{3} + \frac{1}{5} + \frac{1}{9} + \dots + \frac{1}{1025} \approx 0.76352$ . Now  $\frac{1}{1+2^n} < \frac{1}{2^n}$ , so the error is

 $R_{10} \le T_{10} = \sum_{n=11}^{\infty} \frac{1}{2^n} = \frac{1/2^{11}}{1-1/2}$  [geometric series]  $\approx 0.00098$ .

- 36.  $\sum_{n=1}^{10} \frac{n}{(n+1)3^n} = \frac{1}{6} + \frac{2}{27} + \frac{3}{108} + \dots + \frac{10}{649,539} \approx 0.283597$ . Now  $\frac{n}{(n+1)3^n} < \frac{n}{n \cdot 3^n} = \frac{1}{3^n}$ , so the error is  $R_{10} \le T_{10} = \sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{1/3^{11}}{1-1/3} \approx 0.0000085$ .
- 38. Clearly, if p < 0 then the series diverges, since  $\lim_{n \to \infty} \frac{1}{n^p \ln n} = \infty$ . If  $0 \le p \le 1$ , then  $n^p \ln n \le n \ln n \implies$

 $\frac{1}{n^p \ln n} \ge \frac{1}{n \ln n}$  and  $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$  diverges (Exercise 11.3.21), so  $\sum_{n=2}^{\infty} \frac{1}{n^p \ln n}$  diverges. If p > 1, use the Limit Comparison

 $\text{Test with } a_n = \frac{1}{n^p \ln n} \text{ and } b_n = \frac{1}{n^p}. \sum_{n=2}^{\infty} b_n \text{ converges, and } \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{\ln n} = 0, \text{ so } \sum_{n=2}^{\infty} \frac{1}{n^p \ln n} \text{ also converges.}$ 

(Or use the Comparison Test, since  $n^p \ln n > n^p$  for n > e.) In summary, the series converges if and only if p > 1.

- 40. (a) Since  $\lim_{n\to\infty} (a_n/b_n) = 0$ , there is a number N > 0 such that  $|a_n/b_n 0| < 1$  for all n > N, and so  $a_n < b_n$  since  $a_n$  and  $a_n < b_n$  are positive. Thus, since  $\sum b_n$  converges, so does  $\sum a_n$  by the Comparison Test.
  - (b) (i) If  $a_n = \frac{\ln n}{n^3}$  and  $b_n = \frac{1}{n^2}$ , then  $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\ln n}{n} = \lim_{n \to \infty} \frac{\ln x}{n} = \lim_{x \to \infty} \frac{1/x}{1} = 0$ , so  $\sum_{n=1}^{\infty} \frac{\ln n}{n^3}$  converges by part (a).
    - (ii) If  $a_n = \frac{\ln n}{\sqrt{n}e^n}$  and  $b_n = \frac{1}{e^n}$ , then  $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\ln n}{\sqrt{n}} = \lim_{x \to \infty} \frac{\ln x}{\sqrt{x}} = \lim_{x \to \infty} \frac{1/x}{1/(2\sqrt{x})} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0$ . Now

 $\sum b_n$  is a convergent geometric series with ratio r=1/e [|r|<1], so  $\sum a_n$  converges by part (a).

## 12.4 Solutions

- 41. (a) Since  $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$ , there is an integer N such that  $\frac{a_n}{b_n}>1$  whenever n>N. (Take M=1 in Definition 11.1.5.) Then  $a_n>b_n$  whenever n>N and since  $\sum b_n$  is divergent,  $\sum a_n$  is also divergent by the Comparison Test.
  - (b) (i) If  $a_n = \frac{1}{\ln n}$  and  $b_n = \frac{1}{n}$  for  $n \ge 2$ , then  $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n}{\ln n} = \lim_{x \to \infty} \frac{x}{\ln x} = \lim_{x \to \infty} \frac{1}{1/x} = \lim_{x \to \infty} x = \infty$ , so by part (a),  $\sum_{n=2}^{\infty} \frac{1}{\ln n}$  is divergent.
    - (ii) If  $a_n = \frac{\ln n}{n}$  and  $b_n = \frac{1}{n}$ , then  $\sum_{n=1}^{\infty} b_n$  is the divergent harmonic series and  $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \ln n = \lim_{x \to \infty} \ln x = \infty$ , so  $\sum_{n=1}^{\infty} a_n$  diverges by part (a).
- 45. Yes. Since  $\sum a_n$  is a convergent series with positive terms,  $\lim_{n\to\infty}a_n=0$  by Theorem 11.2.6, and  $\sum b_n=\sum\sin(a_n)$  is a series with positive terms (for large enough n). We have  $\lim_{n\to\infty}\frac{b_n}{a_n}=\lim_{n\to\infty}\frac{\sin(a_n)}{a_n}=1>0$  by Theorem 3.3.2. Thus,  $\sum b_n$  is also convergent by the Limit Comparison Test.
- 46. Yes. Since  $\sum a_n$  converges, its terms approach 0 as  $n \to \infty$ , so for some integer N,  $a_n \le 1$  for all  $n \ge N$ . But then  $\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{N-1} a_n b_n + \sum_{n=N}^{\infty} a_n b_n \le \sum_{n=1}^{N-1} a_n b_n + \sum_{n=N}^{\infty} b_n$ . The first term is a finite sum, and the second term converges since  $\sum_{n=1}^{\infty} b_n$  converges. So  $\sum a_n b_n$  converges by the Comparison Test.