12.4 Solutions

1. (a) We cannot say anything about 3" .. If ar, > by, forall n and 3 by, 1s convergent, then 3 a,, could be convergent or
divergent. (See the note after Example 2.)

(b) If . << by, for all n, then 3 a,, 15 convergent. [This is part (1) of the Comparison Test.]
2. (a) Ifap = by, forall n, then 3" a,, 1s divergent. [This 1s part (i1) of the Comparison Test.]
(b) We cannot say anything about %" a,,_ If a, < by, forall n and 3" by, 1s divergent, then 3" a,, could be convergent or

divergent.
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because 1t 1s a p-sertes with p = 2 > 1.
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with p = 1 < 1 (the harmonic series).

12. % < minand 3 % =23 (%) , 50 the given series converges by comparison with a constant multiple of a
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50 converges by the Limit Comparison Test with the convergent p-series —
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27. Use the Limit Comparison Test with an = (l—i——) e " and by = ™" lim Gn _ lim (1+—) =1 = 0. Since
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12.4 Solutions

31. Use the Limit Comparison Test with a,, = sj.n(l) and b, = l Then " oy and 3 b, are senies with positive terms and
i T

32,

35.

36.

. Clearly, if p < 0 then the series diverges, since lim

1 /
lim %: lim Smfﬁ&:;i usmﬁ’ 1=0. SmceZb is the divergent harmonic series,
n—oo g o / i — ne1l
3 sin (1/n) also diverges. [Note that we could also use 1'Hospital’s Rule to evaluate the lmit:
n=1
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Use the Limit Comparison Test with a,, =

[since lim ='/® = 1 by I'Hospital’s Rule},sn 3 L diverges [harmonic series] = E = ’,n diverges.
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> d diverges (Exercise 11.3.21 diverges. If p > 1 the Limit Comparis
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(Or use the Comparison Test, since n” Inn > nf forn > e) In summary, the series converges if and only if p > 1.

. (a) Since lim (an/b.) = 0, there is a number N > 0 such that |a, /b, — 0| << 1 foralln > N, and 50 a,, < b, since ay,

and by, are positive. Thus, since } b converges, so does Y ar by the Comparison Test.
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3" by, is a convergent geometric series withratior = 1/e [|r]| < 1], s0 > an converges by part (a).
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12.4 Solutions

41. (a) Since lim :—" = oo, there is an integer ‘Vﬂmhthat— = 1 whenever n > N_(Take M = 1 in Definition 11.15)

n—oo T “

Then a, > b, whenevern > N and since ¥ b, is divergent, 3" ay, is also divergent by the Comparison Test.

(b) (1‘)1fa“=landb.,=—forn>2 fhen lim 2% — lim - — lim —— & lim —— — lim 2 — oo,
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so by part (a), > L 15 divergent.
n—alnn
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() fan = =~ and b = — then Z bn 15 the divergent harmonic series and lim 2= _ lim Inn= lim Inz = 0o,
n n=1 n—00 [y n—oo oo

S0 i oy, diverges by part (a).
n=1

45. Yes. Since > an is a convergent series with positive terms, lim an = 0 by Theorem 11.2.6,and } " b, = > sin(an)isa

n— oo

series with positive terms (for large enough n). We have lim be _ lim sin(an) =1 > 0 by Theorem 3.3.2. Thus, }_ bn

00 m—oo [
15 also convergent by the Limit Comparison Test.
46. Yes. Since }  a, converges, its ferms approach 0 as n — oo, so for some integer NV, a,, < 1 forall n > N. But then
D ome Gnbn = Zn_ Anbn + D o o Gnbn < E anbn + > o7 bn- The first term is a finite sum, and the second term

comverges since » -, b, converges. S0 3 anb, converges by the Comparison Test.
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