12.3 Solutions

1. The picture shows that $a_2 = \frac{1}{2^{1.3}} < \int_1^2 \frac{1}{x^{1.3}} dx$, $a_3 = \frac{1}{3^{1.3}} < \int_2^3 \frac{1}{x^{1.3}} dx$, and so on, so $\sum_{n=2}^{\infty} \frac{1}{n^{1.3}} < \int_1^{\infty} \frac{1}{x^{1.3}} dx$. The integral converges by (7.8.2) with p = 1.3 > 1, so the series converges. 2. From the first figure, we see that $\int_1^6 f(x) dx < \sum_{i=1}^5 a_i$. From the second figure, we see that $\sum_{i=2}^6 a_i < \int_1^6 f(x) dx$. Thus, we have $\sum_{i=2}^6 a_i < \int_1^6 f(x) dx < \sum_{i=1}^5 a_i$.

3. The function $f(x) = 1/\sqrt[5]{x} = x^{-1/5}$ is continuous, positive, and decreasing on $[1, \infty)$, so the Integral Test applies $\int_{1}^{\infty} x^{-1/5} dx = \lim_{t \to \infty} \int_{1}^{t} x^{-1/5} dx = \lim_{t \to \infty} \left[\frac{5}{4} x^{4/5} \right]_{1}^{t} = \lim_{t \to \infty} \left(\frac{5}{4} t^{4/5} - \frac{5}{4} \right) = \infty$, so $\sum_{n=1}^{\infty} 1/\sqrt[5]{n}$ diverges.

7. $f(x) = xe^{-x}$ is continuous and positive on $[1, \infty)$. $f'(x) = -xe^{-x} + e^{-x} = e^{-x}(1-x) < 0$ for x > 1, so f is decreasing on $[1, \infty)$. Thus, the Integral Test applies.

$$\int_{1}^{\infty} xe^{-x} dx = \lim_{b \to \infty} \int_{1}^{b} xe^{-x} dx = \lim_{b \to \infty} \left[-xe^{-x} - e^{-x} \right]_{1}^{b} \quad [by parts] = \lim_{b \to \infty} \left[-be^{-b} - e^{-b} + e^{-1} + e^{-1} \right] = 2/e$$

since $\lim_{b \to \infty} be^{-b} = \lim_{b \to \infty} \left(b/e^{b} \right) \stackrel{\text{H}}{=} \lim_{b \to \infty} \left(1/e^{b} \right) = 0$ and $\lim_{b \to \infty} e^{-b} = 0$. Thus, $\sum_{n=1}^{\infty} ne^{-n}$ converges.

8. The function $f(x) = \frac{x+2}{x+1} = 1 + \frac{1}{x+1}$ is continuous, positive, and decreasing on $[1, \infty)$, so the Integral Test applies.

$$\int_{1}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{1}^{t} \left(1 + \frac{1}{x+1} \right) dx = \lim_{t \to \infty} \left[x + \ln(x+1) \right]_{1}^{t} = \lim_{t \to \infty} \left(t + \ln(t+1) - 1 - \ln 2 \right) = \infty, \text{ so}$$

$$\int_{1}^{\infty} \frac{x+2}{x+1} dx \text{ is divergent and the series } \sum_{n=1}^{\infty} \frac{n+2}{n+1} \text{ is divergent.}$$

Note: $\lim_{n \to \infty} \frac{n+2}{n+1} = 1$, so the given series diverges by the Test for Divergence.

9. The series $\sum_{n=1}^{\infty} \frac{1}{n^{0.85}}$ is a *p*-series with $p = 0.85 \le 1$, so it diverges by (1). Therefore, the series $\sum_{n=1}^{\infty} \frac{2}{n^{0.85}}$ must also diverge, for if it converged, then $\sum_{n=1}^{\infty} \frac{1}{n^{0.85}}$ would have to converge [by Theorem 8(i) in Section 11.2].

12.3 Solutions

10. $\sum_{n=1}^{\infty} n^{-1.4}$ and $\sum_{n=1}^{\infty} n^{-1.2}$ are *p*-series with p > 1, so they converge by (1). Thus, $\sum_{n=1}^{\infty} 3n^{-1.2}$ converges by Theorem 8(i) in

Section 11.2. It follows from Theorem 8(ii) that the given series $\sum_{n=1}^{\infty} (n^{-1.4} + 3n^{-1.2})$ also converges.

- 11. $1 + \frac{1}{8} + \frac{1}{27} + \frac{1}{64} + \frac{1}{125} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^3}$. This is a *p*-series with p = 3 > 1, so it converges by (1).
- 12. $1 + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + \frac{1}{5\sqrt{5}} + \dots = \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$. This is a *p*-series with $p = \frac{3}{2} > 1$, so it converges by (1).
- 15. $\sum_{n=1}^{\infty} \frac{5-2\sqrt{n}}{n^3} = 5 \sum_{n=1}^{\infty} \frac{1}{n^3} 2 \sum_{n=1}^{\infty} \frac{1}{n^{5/2}}$ by Theorem 11.2.8, since $\sum_{n=1}^{\infty} \frac{1}{n^3}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{5/2}}$ both converge by (1) [with p = 3 > 1 and $p = \frac{5}{2} > 1$]. Thus, $\sum_{n=1}^{\infty} \frac{5-2\sqrt{n}}{n^3}$ converges.

20. The function $f(x) = \frac{1}{x^2 - 4x + 5} = \frac{1}{(x - 2)^2 + 1}$ is continuous, positive, and decreasing on $[2, \infty)$, so the Integral Test

applies.

$$\int_{2}^{\infty} f(x) \, dx = \lim_{t \to \infty} \int_{2}^{t} f(x) \, dx = \lim_{t \to \infty} \int_{2}^{t} \frac{1}{(x-2)^{2}+1} \, dx = \lim_{t \to \infty} \left[\tan^{-1}(x-2) \right]_{2}^{t} = \lim_{t \to \infty} \left[\tan^{-1}(t-2) - \tan^{-1} 0 \right]_{2}^{t}$$
$$= \frac{\pi}{2} - 0 = \frac{\pi}{2}$$

so the series $\sum_{n=2}^{\infty} \frac{1}{n^2 - 4n + 5}$ converges. Of course, this means that $\sum_{n=1}^{\infty} \frac{1}{n^2 - 4n + 5}$ converges too.

30. If $p \le 0$, $\lim_{n \to \infty} \frac{\ln n}{n^p} = \infty$ and the series diverges, so assume p > 0. $f(x) = \frac{\ln x}{x^p}$ is positive and continuous and f'(x) < 0 for $x > e^{1/p}$, so f is eventually decreasing and we can use the Integral Test. Integration by parts gives

$$\int_{1}^{\infty} \frac{\ln x}{x^{p}} dx = \lim_{t \to \infty} \left[\frac{x^{1-p} \left[(1-p) \ln x - 1 \right]}{(1-p)^{2}} \right]_{1}^{t} \text{ (for } p \neq 1) = \frac{1}{(1-p)^{2}} \left[\lim_{t \to \infty} t^{1-p} \left[(1-p) \ln t - 1 \right] + 1 \right], \text{ which exists}$$
whenever $1-p < 0 \quad \Leftrightarrow \quad p > 1$. Thus, $\sum_{n=1}^{\infty} \frac{\ln n}{n^{p}}$ converges $\quad \Leftrightarrow \quad p > 1$.

Page 2

- 32. (a) $f(x) = 1/x^4$ is positive and continuous and $f'(x) = -4/x^5$ is negative for x > 0, and so the Integral Test applies. $\sum_{n=1}^{\infty} \frac{1}{n^4} \approx s_{10} = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots + \frac{1}{10^4} \approx 1.082037.$ $R_{10} \le \int_{10}^{\infty} \frac{1}{x^4} dx = \lim_{t \to \infty} \left[\frac{1}{-3x^3} \right]_{10}^t = \lim_{t \to \infty} \left(-\frac{1}{3t^3} + \frac{1}{3(10)^3} \right) = \frac{1}{3000}, \text{ so the error is at most } 0.000\overline{3}.$ (b) $s_{10} + \int_{11}^{\infty} \frac{1}{x^4} dx \le s \le s_{10} + \int_{10}^{\infty} \frac{1}{x^4} dx \implies s_{10} + \frac{1}{3(11)^3} \le s \le s_{10} + \frac{1}{3(10)^3} \implies 1.082037 + 0.000250 = 1.082287 \le s \le 1.082037 + 0.000333 = 1.082370, \text{ so we get } s \approx 1.08233 \text{ with error } \le 0.00005.$ (c) $R_n \le \int_n^{\infty} \frac{1}{x^4} dx = \frac{1}{3n^3}.$ So $R_n < 0.00001 \implies \frac{1}{3n^3} < \frac{1}{10^5} \implies 3n^3 > 10^5 \implies n > \sqrt[g]{(10)^5/3} \approx 32.2,$ that is, for n > 32.
- **35.** $f(x) = 1/(2x+1)^6$ is continuous, positive, and decreasing on $[1, \infty)$, so the Integral Test applies. Using (2),

$$R_n \leq \int_n^{\infty} (2x+1)^{-6} dx = \lim_{t \to \infty} \left[\frac{-1}{10(2x+1)^5} \right]_n^t = \frac{1}{10(2n+1)^5}.$$
 To be correct to five decimal places, we want

$$\frac{1}{10(2n+1)^5} \leq \frac{5}{10^6} \quad \Leftrightarrow \quad (2n+1)^5 \geq 20,000 \quad \Leftrightarrow \quad n \geq \frac{1}{2} \left(\sqrt[5]{20,000} - 1 \right) \approx 3.12, \text{ so use } n = 4.$$

$$s_4 = \sum_{n=1}^4 \frac{1}{(2n+1)^6} = \frac{1}{3^6} + \frac{1}{5^6} + \frac{1}{7^6} + \frac{1}{9^6} \approx 0.001\,446 \approx 0.00145.$$