1. We plot T_{0}, T_{2}, T_{4}, and T_{6} on the same graph as $\cos (x)$.

with(plots) :
$f 0:=x \rightarrow \sum_{k=0}^{0} \frac{(-1)^{k} x^{2 \cdot k}}{(2 \cdot k)!}$

$$
x \rightarrow \sum_{k=0}^{0} \frac{(-1)^{k} x^{2 k}}{(2 k)!}
$$

$f 2:=x \rightarrow \sum_{k=0}^{1} \frac{(-1)^{k} x^{2 \cdot k}}{(2 \cdot k)!}$

$$
x \rightarrow \sum_{k=0}^{1} \frac{(-1)^{k} x^{2 k}}{(2 k)!}
$$

$f 4:=x \rightarrow \sum_{k=0}^{2} \frac{(-1)^{k} x^{2 \cdot k}}{(2 \cdot k)!}$

$$
x \rightarrow \sum_{k=0}^{2} \frac{(-1)^{k} x^{2 k}}{(2 k)!}
$$

$f 6:=x \rightarrow \sum_{k=0}^{3} \frac{(-1)^{k} x^{2 \cdot k}}{(2 \cdot k)!}$

$$
x \rightarrow \sum_{k=0}^{3} \frac{(-1)^{k} x^{2 k}}{(2 k)!}
$$

$f 0 p:=\operatorname{plot}(f 0(x), x=-4 . .4, y=-2 . .2): \%$:
$f 2 p:=\operatorname{plot}(f 2(x), x=-4 . .4, y=-2 . .2): \%$:
$f 4 p:=\operatorname{plot}(f 4(x), x=-4 . .4, y=-2 . .2): \%$:
$f 6 p:=\operatorname{plot}(f 6(x), x=-4 . .4, y=-2 . .2): \%$:
cosinep $:=\operatorname{plot}(\cos (x), x=-4 . .4, y=-2 . .2): \%$:
display ([f0p,f2p,f4p,f6p, cosinep])

\#s 3-10: Find the Taylor polynomial $T_{n}(x)$ for the function f at the number $\quad a$. Graph f and T_{3} on the same graph.
5. $f(x)=\cos (x), a=\frac{\pi}{2}$

$$
\begin{aligned}
& \begin{aligned}
& f:= x \rightarrow \cos (x) \\
& t 3:=\operatorname{taylor}\left(f(x), x=\frac{\mathrm{Pi}}{2}, 4\right) \\
& \quad-\left(x-\frac{1}{2} \pi\right)+\frac{1}{6}\left(x-\frac{1}{2} \pi\right)^{3}+\mathrm{O}\left(\left(x-\frac{1}{2} \pi\right)^{4}\right)
\end{aligned} \\
& \begin{array}{r}
t 3:=x \rightarrow-\left(x-\frac{1}{2} \pi\right)+\frac{1}{6}\left(x-\frac{1}{2} \pi\right)^{3} \\
x \rightarrow-x+\frac{1}{2} \pi+\frac{1}{6}\left(x-\frac{1}{2} \pi\right)^{3}
\end{array}
\end{aligned}
$$

$\operatorname{plot}([t 3(x), f(x)], x=0 . . \mathrm{Pi}, y=-2 . .2)$

Very good match for values of x close to $x=0$.
8. $f(x)=\frac{\ln (x)}{x}$
8. $f(x)=\frac{\ln (x)}{x}, a=1$
$f:=x \rightarrow \frac{\ln (x)}{x}$

$$
x \rightarrow \frac{\ln (x)}{x}
$$

$f 1:=\mathrm{D}(f)$

$$
x \rightarrow \frac{1}{x^{2}}-\frac{\ln (x)}{x^{2}}
$$

$f 2:=\mathrm{D}(f 1)$

$$
x \rightarrow-\frac{3}{x^{3}}+\frac{2 \ln (x)}{x^{3}}
$$

$f 3:=\mathrm{D}(f 2)$

$$
x \rightarrow \frac{11}{x^{4}}-\frac{6 \ln (x)}{x^{4}}
$$

$f 4:=\mathrm{D}(f 3)$

$$
x \rightarrow-\frac{50}{x^{5}}+\frac{24 \ln (x)}{x^{5}}
$$

$f(1)$
f2(1)
f3(1)
f4(1)
-50
$T_{3}:=x \rightarrow 1 \cdot(x-1)-\frac{3}{2!} \cdot(x-1)^{2}+\frac{11}{3!} \cdot(x-1)^{3}$ $x \rightarrow x-1-\frac{3(x-1)^{2}}{2!}+\frac{11(x-1)^{3}}{3!}$

T3plot $:=\operatorname{plot}\left(T_{3}(x), x=\frac{1}{2} . . \frac{3}{2}, y=-2 . .2\right.$, color $=$ red, thickness

$$
=2): \%:
$$

$$
\begin{aligned}
\text { fplot } & :=\operatorname{plot}\left(f(x), x=\frac{1}{2} . . \frac{3}{2}, y=-2 . .2, \text { color }=\right.\text { black, thickness } \\
& =2): \%:
\end{aligned}
$$

display ([T3plot,fplot $]$)

\#s 11, 12: Use a computer algebra system to find the Taylor polynomials T_{n} centered at a for $n=2,3,4,5$. Then graph these polynomials and f on the same screen. I use a souped-up approach using the taylor command.
11. $f(x)=\cot (x), a=\frac{\pi}{4}$
$f:=x \rightarrow \cot (x)$

$$
x \rightarrow \cot (x)
$$

$t 2:=x \rightarrow \operatorname{taylor}\left(f(x), x=\frac{\mathrm{Pi}}{4}, 3\right)$

$$
x \rightarrow \operatorname{taylor}\left(f(x), x=\frac{1}{4} \pi, 3\right)
$$

$t 3:=x \rightarrow \operatorname{taylor}\left(f(x), x=\frac{\mathrm{Pi}}{4}, 4\right)$

$$
x \rightarrow \operatorname{taylor}\left(f(x), x=\frac{1}{4} \pi, 4\right)
$$

$t 4:=x \rightarrow \operatorname{taylor}\left(f(x), x=\frac{\mathrm{Pi}}{4}, 5\right)$

$$
x \rightarrow \operatorname{taylor}\left(f(x), x=\frac{1}{4} \pi, 5\right)
$$

$t 5:=x \rightarrow \operatorname{taylor}\left(f(x), x=\frac{\mathrm{Pi}}{4}, 6\right)$

$$
x \rightarrow \operatorname{taylor}\left(f(x), x=\frac{1}{4} \pi, 6\right)
$$

Procedure to build the following polynomials: $\mathrm{t} 3(\mathrm{x})$ enter, copy and paste the 3rd degree polynomial after typing $t 3:=x \rightarrow$.

$$
\begin{aligned}
t 2:= & x \rightarrow 1-2\left(x-\frac{1}{4} \pi\right)+2\left(x-\frac{1}{4} \pi\right)^{2} \\
& x \rightarrow 1-2 x+\frac{1}{2} \pi+2\left(x-\frac{1}{4} \pi\right)^{2} \\
t 3:= & x \rightarrow 1-2\left(x-\frac{1}{4} \pi\right)+2\left(x-\frac{1}{4} \pi\right)^{2}-\frac{8}{3}\left(x-\frac{1}{4} \pi\right)^{3} \\
& x \rightarrow 1-2 x+\frac{1}{2} \pi+2\left(x-\frac{1}{4} \pi\right)^{2}-\frac{8}{3}\left(x-\frac{1}{4} \pi\right)^{3} \\
t 4:= & x \rightarrow 1-2\left(x-\frac{1}{4} \pi\right)+2\left(x-\frac{1}{4} \pi\right)^{2}-\frac{8}{3}\left(x-\frac{1}{4} \pi\right)^{3} \\
& +\frac{10}{3}\left(x-\frac{1}{4} \pi\right)^{4}
\end{aligned}
$$

$$
\begin{aligned}
x \rightarrow & 1-2 x+\frac{1}{2} \pi+2\left(x-\frac{1}{4} \pi\right)^{2}-\frac{8}{3}\left(x-\frac{1}{4} \pi\right)^{3}+\frac{10}{3}(x \\
& \left.-\frac{1}{4} \pi\right)^{4}
\end{aligned}
$$

$$
\begin{aligned}
t 5:= & x \rightarrow 1-2\left(x-\frac{1}{4} \pi\right)+2\left(x-\frac{1}{4} \pi\right)^{2}-\frac{8}{3}\left(x-\frac{1}{4} \pi\right)^{3} \\
+ & \frac{10}{3}\left(x-\frac{1}{4} \pi\right)^{4}-\frac{64}{15}\left(x-\frac{1}{4} \pi\right)^{5} \\
x \rightarrow & 1-2 x+\frac{1}{2} \pi+2\left(x-\frac{1}{4} \pi\right)^{2}-\frac{8}{3}\left(x-\frac{1}{4} \pi\right)^{3}+\frac{10}{3}(x \\
& \left.-\frac{1}{4} \pi\right)^{4}-\frac{64}{15}\left(x-\frac{1}{4} \pi\right)^{5}
\end{aligned}
$$

$\operatorname{plot}([\cot (x), t 2(x), t 3(x), t 4(x), t 5(x)], x=0 . . \mathrm{Pi}, y=-10 . .10)$

12. $f(x)=\sqrt[3]{1+x^{2}}, a=0$.
$f:=x \rightarrow \sqrt[3]{1+x^{2}}$

$$
x \rightarrow\left(1+x^{2}\right)^{1 / 3}
$$

$t 2:=x \rightarrow \operatorname{taylor}(f(x), x=0,3)$

$$
x \rightarrow \operatorname{taylor}(f(x), x=0,3)
$$

$t 3:=x \rightarrow \operatorname{taylor}(f(x), x=0,4)$

$$
x \rightarrow \operatorname{taylor}(f(x), x=0,4)
$$

$t 4:=x \rightarrow \operatorname{taylor}(f(x), x=0,5)$

$$
x \rightarrow \operatorname{taylor}(f(x), x=0,5)
$$

$t 5:=x \rightarrow \operatorname{taylor}(f(x), x=0,6)$

$$
x \rightarrow \operatorname{taylor}(f(x), x=0,6)
$$

$t 2:=x \rightarrow 1+\frac{1}{3} x^{2}$

$$
x \rightarrow 1+\frac{1}{3} x^{2}
$$

$t 3:=x \rightarrow 1+\frac{1}{3} x^{2}$

$$
x \rightarrow 1+\frac{1}{3} x^{2}
$$

$t 4:=x \rightarrow 1+\frac{1}{3} x^{2}-\frac{1}{9} x^{4}$

$$
x \rightarrow 1+\frac{1}{3} x^{2}-\frac{1}{9} x^{4}
$$

$t 3, t 5$ don't change anything.
tplots $:=\operatorname{plot}([t 2(x), t 4(x)], x=-3 . .3, y=-10 . .10): \%:$
fplot $:=\operatorname{plot}(f(x), x=-3 . .3, y=-10 . .10$, color $=$ blue, thickness =2) $\%$:
display ([fplot, tplots $])$

\#s 13-22
(a) Approximate f by a Taylor plynomial with degree n at the number a.
(b) Use Taylor's Inequality to estimate the accuracy of the approximation, when x lies in the given interval.
(c) Check your result in part (b) by graphing $\left|R_{n}(x)\right|$.
16. $f(x)=\sin (x), a=\frac{\pi}{6}, n=2,4 \leq x \leq 4.2$

$$
f:=x \rightarrow \sin (x)
$$

$$
x \rightarrow \sin (x)
$$

$t:=x \rightarrow \operatorname{taylor}\left(f(x), x=\frac{\mathrm{Pi}}{6}, 3\right)$

$$
x \rightarrow \operatorname{taylor}\left(f(x), x=\frac{1}{6} \pi, 3\right)
$$

$t(x)$

$$
\frac{1}{2}+\frac{1}{2} \sqrt{3}\left(x-\frac{1}{6} \pi\right)-\frac{1}{4}\left(x-\frac{1}{6} \pi\right)^{2}+O\left(\left(x-\frac{1}{6} \pi\right)^{3}\right)
$$

$$
t 2:=x \rightarrow \frac{1}{2}+\frac{1}{2} \sqrt{3}\left(x-\frac{1}{6} \pi\right)-\frac{1}{4}\left(x-\frac{1}{6} \pi\right)^{2}
$$

$$
x \rightarrow \frac{1}{2}+\frac{1}{2} \sqrt{3}\left(x-\frac{1}{6} \pi\right)-\frac{1}{4}\left(x-\frac{1}{6} \pi\right)^{2}
$$

21. $f(x)=x \cdot \sin (x), a=0, n=4,-1 \leq x \leq 1$ $f:=x \rightarrow x \cdot \sin (x)$

$$
x \rightarrow x \sin (x)
$$

$t:=x \rightarrow \operatorname{taylor}(f(x), x=0,5)$

$$
x \rightarrow \operatorname{taylor}(f(x), x=0,5)
$$

$t(x)$

$$
x^{2}-\frac{1}{6} x^{4}+\mathrm{O}\left(x^{6}\right)
$$

$t 4:=x \rightarrow x^{2}-\frac{1}{6} x^{4}$

$$
x \rightarrow x^{2}-\frac{1}{6} x^{4}
$$

23.

23. Use \#5 to approximate $\cos \left(80^{\circ}\right)$ correct to five decimal places. Have to execute the \#5 stuff to get f and $t 3$ acting correctly.
$t 3(x)$

$$
-x+\frac{1}{2} \pi+\frac{1}{6}\left(x-\frac{1}{2} \pi\right)^{3}
$$

$t 3\left(\frac{80 \cdot \mathrm{Pi}}{180}\right)$

$$
\frac{1}{18} \pi-\frac{1}{34992} \pi^{3}
$$

evalf (\%)

$$
0.173646829
$$

So it looks like $\mathbf{0 . 1 7 3 6 5}$ is correct to 5 places. I'm going to double check by looking at the next term in this alternating series:

$$
\begin{aligned}
& \text { taylor }\left(\cos (x), x=\frac{\mathrm{Pi}}{2}, 6\right) \\
& -\left(x-\frac{1}{2} \pi\right)+\frac{1}{6}\left(x-\frac{1}{2} \pi\right)^{3}-\frac{1}{120}\left(x-\frac{1}{2} \pi\right)^{5}+\mathrm{O}((x) \\
& \left.\left.-\frac{1}{2} \pi\right)^{6}\right) \\
& t 5:=x \rightarrow-\left(x-\frac{1}{2} \pi\right)+\frac{1}{6}\left(x-\frac{1}{2} \pi\right)^{3}-\frac{1}{120}\left(x-\frac{1}{2} \pi\right)^{5} \\
& x \rightarrow-x+\frac{1}{2} \pi+\frac{1}{6}\left(x-\frac{1}{2} \pi\right)^{3}-\frac{1}{120}\left(x-\frac{1}{2} \pi\right)^{5} \\
& -\frac{1}{120}\left(\frac{80 \cdot \mathrm{Pi}}{180}-\frac{1}{2} \pi\right)^{5} \\
& \text { evalf }(\%) \\
& 0.000001349601624+0.1736468291
\end{aligned} \quad \frac{1}{226748160} \pi^{5} .
$$

Sure enough, it doesn't change in the 5th digit, when I add the next term in there. Good.
24.

Use info from \#16 to evaluate $\sin \left(38^{0}\right)$ correct to five decimal places.

$$
\begin{aligned}
& t 2:=x \rightarrow \frac{1}{2}+\frac{1}{2} \sqrt{3}\left(x-\frac{1}{6} \pi\right)-\frac{1}{4}\left(x-\frac{1}{6} \pi\right)^{2} \\
& x \rightarrow \frac{1}{2}+\frac{1}{2} \sqrt{3}\left(x-\frac{1}{6} \pi\right)-\frac{1}{4}\left(x-\frac{1}{6} \pi\right)^{2} \\
& t 2\left(\frac{38 \cdot \mathrm{Pi}}{180}\right) \\
& \frac{1}{2}+\frac{1}{45} \sqrt{3} \pi-\frac{1}{2025} \pi^{2}
\end{aligned}
$$

evalf (\%)

$$
0.616046079
$$

From this, it appears that we have $\mathbf{0 . 6 1 6 0 5}$ gives us the desired result.

25.

Use Taylor's Inequality to determine the n

