1. $x=t \sin t, y=t^{2}+t \Rightarrow \frac{d y}{d t}=2 t+1, \frac{d x}{d t}=t \cos t+\sin t$, and $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t+1}{t \cos t+\sin t}$.
2. $x=\frac{1}{t}, y=\sqrt{t} e^{-t} \Rightarrow \frac{d y}{d t}=t^{1 / 2}\left(-e^{-t}\right)+e^{-t}\left(\frac{1}{2} t^{-1 / 2}\right)=\frac{1}{2} t^{-1 / 2} e^{-t}(-2 t+1)=\frac{-2 t+1}{2 t^{1 / 2} e^{t}}, \frac{d x}{d t}=-\frac{1}{t^{2}}$, and $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{-2 t+1}{2 t^{1 / 2} e^{t}}\left(-\frac{t^{2}}{1}\right)=\frac{(2 t-1) t^{3 / 2}}{2 e^{t}}$.
3. $x=t-t^{-1}, y=1+t^{2} ; t=1$. $\quad \frac{d y}{d t}=2 t, \frac{d x}{d t}=1+t^{-2}=\frac{t^{2}+1}{t^{2}}$, and $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=2 t\left(\frac{t^{2}}{t^{2}+1}\right)=\frac{2 t^{3}}{t^{2}+1}$.

When $t=1,(x, y)=(0,2)$ and $d y / d x=\frac{2}{2}=1$, so an equation of the tangent to the curve at the point corresponding to $t=1$ is $y-2=1(x-0)$, or $y=x+2$.
5. $x=e^{\sqrt{t}}, y=t-\ln t^{2} ; t=1 . \quad \frac{d y}{d t}=1-\frac{2 t}{t^{2}}=1-\frac{2}{t}, \frac{d x}{d t}=\frac{e^{\sqrt{t}}}{2 \sqrt{t}}$, and $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{1-2 / t}{e^{\sqrt{t}} /(2 \sqrt{t})} \cdot \frac{2 t}{2 t}=\frac{2 t-4}{\sqrt{t} e^{\sqrt{t}}}$.

When $t=1,(x, y)=(e, 1)$ and $\frac{d y}{d x}=-\frac{2}{e}$, so an equation of the tangent line is $y-1=-\frac{2}{e}(x-e)$, or $y=-\frac{2}{e} x+3$.
9. $x=6 \sin t, y=t^{2}+t ;(0,0)$.
$\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t+1}{6 \cos t}$. The point $(0,0)$ corresponds to $t=0$, so the
slope of the tangent at that point is $\frac{1}{6}$. An equation of the tangent is therefore $y-0=\frac{1}{6}(x-0)$, or $y=\frac{1}{6} x$.

11. $x=4+t^{2}, \quad y=t^{2}+t^{3} \Rightarrow \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t+3 t^{2}}{2 t}=1+\frac{3}{2} t \Rightarrow$
$\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d(d y / d x) / d t}{d x / d t}=\frac{(d / d t)\left(1+\frac{3}{2} t\right)}{2 t}=\frac{3 / 2}{2 t}=\frac{3}{4 t}$.
The curve is CU when $\frac{d^{2} y}{d x^{2}}>0$, that is, when $t>0$.
18. $x=2 t^{3}+3 t^{2}-12 t, y=2 t^{3}+3 t^{2}+1$.
$\frac{d y}{d t}=6 t^{2}+6 t=6 t(t+1)$, so $\frac{d y}{d t}=0 \Leftrightarrow$
$t=0$ or $-1 \quad \Leftrightarrow \quad(x, y)=(0,1)$ or $(13,2)$.
$\frac{d x}{d t}=6 t^{2}+6 t-12=6(t+2)(t-1)$, so $\frac{d x}{d t}=0 \quad \Leftrightarrow$

$t=-2$ or $1 \Leftrightarrow \quad(x, y)=(20,-3)$ or $(-7,6)$.
The curve has horizontal tangents at $(0,1)$ and $(13,2)$, and vertical tangents at $(20,-3)$ and $(-7,6)$.
25. $x=\cos t, y=\sin t \cos t . \quad d x / d t=-\sin t, d y / d t=-\sin ^{2} t+\cos ^{2} t=\cos 2 t$. $(x, y)=(0,0) \Leftrightarrow \cos t=0 \Leftrightarrow t$ is an odd multiple of $\frac{\pi}{2}$. When $t=\frac{\pi}{2}$, $d x / d t=-1$ and $d y / d t=-1$, so $d y / d x=1$. When $t=\frac{3 \pi}{2}, d x / d t=1$ and $d y / d t=-1$. So $d y / d x=-1$. Thus, $y=x$ and $y=-x$ are both tangent to the curve at $(0,0)$.

29. $x=2 t^{3}, y=1+4 t-t^{2} \quad \Rightarrow \quad \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{4-2 t}{6 t^{2}}$. Now solve $\frac{d y}{d x}=1 \quad \Leftrightarrow \quad \frac{4-2 t}{6 t^{2}}=1 \quad \Leftrightarrow$
$6 t^{2}+2 t-4=0 \Leftrightarrow 2(3 t-2)(t+1)=0 \Leftrightarrow t=\frac{2}{3}$ or $t=-1$. If $t=\frac{2}{3}$, the point is $\left(\frac{16}{27}, \frac{29}{9}\right)$, and if $t=-1$, the point is $(-2,-4)$.

