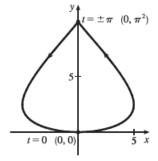
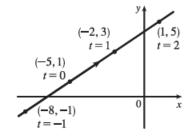

11.1 Solutions

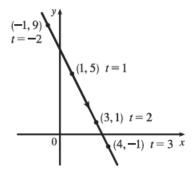

2. $x = 2\cos t$, $y = t - \cos t$, $0 \le t \le 2\pi$

t	0	$\pi/2$	π	$3\pi/2$	2π
\boldsymbol{x}	2	0	-2	0	2
y	-1	$\pi/2$	$\pi + 1$	$3\pi/2$	$2\pi - 1$
		1.57	4.14	4.71	5.28

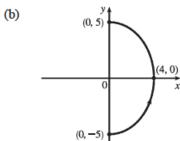
3. $x = 5 \sin t$, $y = t^2$, $-\pi \le t \le \pi$


t	Τ	$-\pi$	$-\pi/2$	0	$\pi/2$	π
\boldsymbol{x}		0	-5	0	5	0
\boldsymbol{y}	Т	π^2	$\pi^2/4$	0	$\pi^2/4$	π^2
		9.87	2.47		2.47	9.87

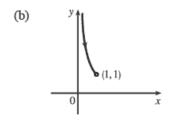
5. x = 3t - 5, y = 2t + 1


(a)								
	t	-2	-1	0	1	2	3	4
	\boldsymbol{x}	-11	-8	-5	-2	1	4	7
	\boldsymbol{y}	-3	-1	1	3	5	7	9

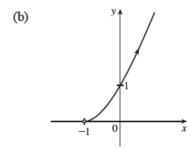
(b) $x = 3t - 5 \implies 3t = x + 5 \implies t = \frac{1}{3}(x + 5) \implies y = 2 \cdot \frac{1}{3}(x + 5) + 1$, so $y = \frac{2}{3}x + \frac{13}{3}$.


6. x = 1 + t, y = 5 - 2t, $-2 \le t \le 3$

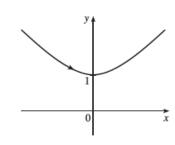
(b) $x=1+t \Rightarrow t=x-1 \Rightarrow y=5-2(x-1),$ so $y=-2x+7, -1 \leq x \leq 4.$



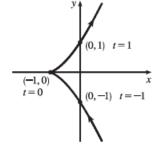
11.1 Solutions


12. (a) $x=4\cos\theta, y=5\sin\theta, -\pi/2\leq\theta\leq\pi/2$. $\left(\frac{x}{4}\right)^2+\left(\frac{y}{5}\right)^2=\cos^2\theta+\sin^2\theta=1, \text{ which is an ellipse with }x\text{-intercepts }(\pm4,0) \text{ and }y\text{-intercepts }(0,\pm5).$ We obtain the portion of the ellipse with $x\geq0$ since $4\cos\theta\geq0$ for $-\pi/2\leq\theta\leq\pi/2$.

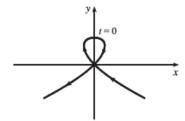
13. (a) $x=\sin t,\,y=\csc t,\,0< t<\frac{\pi}{2}.$ $y=\csc t=\frac{1}{\sin t}=\frac{1}{x}. \text{ For } 0< t<\frac{\pi}{2}, \text{ we have}$ 0< x<1 and y>1. Thus, the curve is the portion of the hyperbola y=1/x with y>1.



14. (a) $x=e^t-1$, $y=e^{2t}$. $y=(e^t)^2=(x+1)^2$ and since x>-1, we have the right side of the parabola $y=(x+1)^2$.


11.1 Solutions

17. (a) $x=\sinh t, y=\cosh t \ \Rightarrow \ y^2-x^2=\cosh^2 t-\sinh^2 t=1$. Since $y=\cosh t\geq 1$, we have the upper branch of the hyperbola $y^2-x^2=1$.



(b)

- 19. $x = 3 + 2\cos t$, $y = 1 + 2\sin t$, $\pi/2 \le t \le 3\pi/2$. By Example 4 with r = 2, h = 3, and k = 1, the motion of the particle takes place on a circle centered at (3,1) with a radius of 2. As t goes from $\frac{\pi}{2}$ to $\frac{3\pi}{2}$, the particle starts at the point (3,3) and moves counterclockwise to (3,-1) [one-half of a circle].
- 20. $x = 2\sin t$, $y = 4 + \cos t$ $\Rightarrow \sin t = \frac{x}{2}$, $\cos t = y 4$. $\sin^2 t + \cos^2 t = 1$ $\Rightarrow \left(\frac{x}{2}\right)^2 + (y 4)^2 = 1$. The motion of the particle takes place on an ellipse centered at (0,4). As t goes from 0 to $\frac{3\pi}{2}$, the particle starts at the point (0,5) and moves clockwise to (-2,4) [three-quarters of an ellipse].
- 25. When t = -1, (x, y) = (0, -1). As t increases to 0, x decreases to -1 and y increases to 0. As t increases from 0 to 1, x increases to 0 and y increases to 1. As t increases beyond 1, both x and y increase. For t < -1, x is positive and decreasing and y is negative and increasing. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.</p>

26. For t<-1, x is positive and decreasing, while y is negative and increasing (these points are in Quadrant IV). When t=-1, (x,y)=(0,0) and, as t increases from -1 to 0, x becomes negative and y increases from 0 to 1. At t=0, (x,y)=(0,1) and, as t increases from 0 to 1, y decreases from 1 to 0 and x is positive. At t=1, (x,y)=(0,0) again, so the loop is completed. For t>1, x and y both

become large negative. This enables us to draw a rough sketch. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.