11.1 Solutions for Lecture

La=14+VE y=t"—4 0<t<5 ¥ s
t [0 1 2 3 1 5 (1+5.5)
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11.1 Solutions for Lecture

5. x=3t—5, y=2t+1

@
t| -2 -1 0 1 2 3 4
z|-11 -8 -5 -2 1 4 7
y| -3 -1 1 3 5 7 9

M)z=3t—5 = 3t=z+5 = t=21(z+5) =

1 2 13
y=2-3(z+5)+1,s0y=3x+ 3.

6.rx=1+t y=5—2t —-2<t<3
(a)

t -2 -1 0 1 2
x| -1 0 1 2 3 4
y| 9 7 5 3 1 -1

z=1+t = t=x—1 = y=5-—-2(zx—1),
soy=—2x4+7, —1<z<4

T.a=1t"—2 y=5-—2t
(a)

—3<t<4

£

t | -3 -2 -1 0 1 2 3 4
x T 2 -1 -2 -1 2 T 14
] 11 9 T 3 3 1 -1 -3

b)y=5—-2t = 24=5—y = t=%(5—y) =

z=[2(5-y)] —2s0z=2(5-y)? -2 —-3<y<IL

B x=1+3 y=2-—1¢
(a)

t | -3 -2 -1 0 1 2 3
z | -8 -6 -2 1 4 T 10
y | -7 -2 1 2 1 -2 -7

Mz=1+3 = t=1ixz-1) = y=2-[ z-1)]°,

soy=—2(z—1)*+2

¥
—=L9)
==

(1,5) r=1
(3.,1) t=2

(4,—1) t=3 x

(=]

(7,11)
/r=—3
N

1,2) t=0
=2,1) g:?ﬂ,l} =1
X
(=5,-2) (7,=2)
t==2 =2
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11.1 Solutions for Lecture

9. z=+t y=1—t

(a)
tlo 1 2 3 4
z|[0 1 1414 1732 2
y|[1 0 -1 —2 -3

Mz=+vt = t=2" = y=1—t=1—2z" Sincet>0,z>0.
So the curve is the right half of the parabola y = 1 — =

0. z=¢,y=14
(a)

2

Wy=F = t=3y = ==2=(Y) =¢’’ teRyeRz20

M. () x =sinf,y =cos@ 0 <8 <7
2’ +y® =sin®f 4 cos’@ =1.Since 0 < 8 < m,
we have sin@ > 0, so z = 0. Thus, the curve is the
right half of the circle z* + 3% = 1.
(b) !

(nf l}'

(0, =1)

o, 1) =0

\(1,0} =1

X

(2,-3) r=4

(4,8)
=2
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11.1 Solutions for Lecture

12. (a) z = 4cos 8,y = Hsinf, —7w/2 < 6 < m/2.
(2)* + (%)” = cos® 0 +sin” @ = 1, whichis an
ellipse with z-intercepts (+4, 0) and y-intercepts
(0, £5). We obtain the portion of the ellipse with
x> Osince dcos§ > 0 for—7/2 < 6 < m/2.
® 0

(4, 0)

{0, =35)

13. (@) z =sint, y = csct, 0 <t < 3.

1 1
y =csct = —— = —_ For0 < ¢t < &, we have
sint =« 2

0 < z < 1and y > 1. Thus, the curve is the portion
of the hyperbola y = 1/zwithy > 1.
(b) ’

(1.1)

B@z=e—lLy=e"* y=(f)>=(x+1)"and
since x > —1, we have the right side of the parabola
y=(x+1}2.

(®) ’
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11.1 Solutions for Lecture

15. (@) z=e"' = 2U=Inz = t=%lnm_

y=t—|—l=%lnx—l—l_

(b) !
ira

16. (@) z=Int,y=+v%t> 1

z=Int = t=¢ = y=+t=¢"22>0.

(b) 4
0.1)
0 x
17. (3) x = sinht,y = cosht = z*® — 2" = cosh®t —sinh®¢ = 1. Smce (b) y

y = cosh t > 1, we have the upper branch of the hyperbola 3> — z* = 1.

0 X
18. (a) x = 2cosht, y = Gsinht = %:cﬂshi,%:sinht = (b) d
xy2 A i
(E) = cosh? ¢, (g) = sinh® ¢. Since cosh® ¢ — sinh® £ = 1, we have
2 P . :
T—ﬁ=l,ahyperbola_BecausexE2,We]1avethenghtbranchnfthe 0 *
hyperbola.

19. z =3+ 2cost,y=1+2sint, w/2 < ¢ < 3w/2. ByExample 4 withr =2, h = 3, and k& = 1, the motion of the particle
takes place on a circle centered at (3, 1) with a radius of 2. As ¢ goes from Z to 2%, the particle starts at the point (3, 3) and

moves counterclockwise to (3, —1) [one-half of a circle].
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11.1 Solutions for Lecture

2
20. x = 2sint, y =4+ cost = sint=§,cust=y—4_ sinft4cos®t=1 = (g) + (y — 4)* = 1. The motion

of the particle takes place on an ellipse centered at (0, 4). As ¢ goes from 0 to 2Z | the particle starts at the point (0, 5) and
moves clockwise to (—2, 4) [three-quarters of an ellipse].
— 55 — int— = — ¥ g 2y 2\ (¥ = '
2. x = 5sint, y = 2cost = 51nt—5,cost—2_ sin“t+cos“t=1 = (5) —|—(2) = 1. The motion of the
particle takes place on an ellipse centered at (0,0). As ¢ goes from —m to 5w, the particle starts at the point (0, —2) and moves
clockwise around the ellipse 3 times.

22, y = cos’t = 1 —sin®t = 1 — 2*. The motion of the particle takes place on the parabola y = 1 — z*. As ¢ goes from —2m to
—r, the particle starts at the point (0, 1), moves to (1, 0), and goes back to (0, 1). As ¢ goes from — to 0, the particle moves
to (—1,0) and goes back to (0, 1). The particle repeats this motion as ¢ goes from 0 to 2.

23. Wemusthave 1 < < 4and 2 < y < 3. So the graph of the curve must be contained in the rectangle [1, 4] by [2, 3].

24. (a) From the first graph, we have 1 < = < 2. From the second graph, we have —1 < y < 1. The only choice that satisfies
either of those conditions 1s IIT.

(b) From the first graph, the values of x cycle through the values from —2 to 2 four tumes. From the second graph, the values
of y eycle through the values from —2 to 2 six times. Choice I satisfies these conditions.

(c) From the first graph, the values of = cycle through the values from —2 to 2 three times. From the second praph, we have
0 < y < 2. Choice IV satisfies these conditions.

(d) From the first praph, the values of = cycle through the values from —2 to 2 two times. From the second graph, the values of
y do the same thing. Choice II satisfies these conditions.

25. Whent = —1, (=, y) = (0, —1). As ¢ increases to 0, = decreases to —1 and y ¥
increases to 0. As ¢ increases from 0 to 1, x mcreases to 0 and y increases to 1. 4} -
As ¢ increases beyond 1, both = and y increase. For ¢ < —1, = is positive and /
decreasing and y 15 negative and increasing. We could achieve greater accuracy 5_:100]\ 0,—1) t= _11

by estimating - and y-values for selected values of ¢ from the given graphs and

plotting the corresponding points.
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11.1 Solutions for Lecture

26. For ¢ <¢ —1, = is positive and decreasing, while y is negative and increasing (these y
points are in Quadrant IV). When ¢ = —1, (z, y) = (0,0) and, as ¢ increases from

—1 to 0, = becomes negative and y mcreases from0to 1. At+ =0, (x,y) = (0, 1)
and, as ¢ mcreases from 0 to 1, y decreases from 1 to 0 and = 1s positive. At

t=1,(z,y) = (0,0) agan, so the loop 1s completed. For ¢ > 1, x and y both
become large negative. This enables us to draw a rough sketch. We could achieve preater accuracy by estimating - and
y-values for selected values of ¢ from the given graphs and plotting the corresponding pomts.

27. When ¢ = 0 we see that = 0 and y = 0, so the curve starts at the origin. As ¢ ¥ :=%
increasesfmm[]tu%,thegraphsshawthatymcreasesﬁ'omﬂmlwhﬂex Eg
increases from 0 to 1, decreases to 0 and to —1, then increases back to 0, so we .
arrive at the point (0, 1). Similarly, as ¢ increases from 2 to 1, y decreases from 1 R

to 0 while x repeats its pattern, and we arrive back at the origin. We could achieve greater accuracy by estimating z- and
y-values for selected values of ¢ from the given graphs and plotting the corresponding pomts.

28. (@) z=t*—¢+1= (¢ +1) —t > 0 [think of the graphs of y — #* + 1 and y = ¢] and y = #*> > 0, so these equations
are matched with graph V.
M) y=+t>0. =z=1t>—2t=1t(t— 2)is negative for 0 < ¢ < 2, so these equations are matched with graph L.
(c) = = sin 2t has period 27 /2 = w. Note that
y(t + 2m) = sinlt + 2w + sin 2(¢ + 2)] = sin(t + 27 + sin 2¢) = sin(¢ + sin 2t) = y(t), 50 y has period 2x_
These equations match graph IT since x cycles through the values —1 to 1 twice as y cycles through those values once.
(d) z = cos 5¢ has period 27 /5 and y = sin 2t has period , so = will take on the values —1 to 1, and then 1 to —1, before

takes on the values —1 to 1. Note that when ¢ = 0, (z, y) = (1, 0). These equations are matched with graph VI

(€) x =t +sin4dt, y =" +cos3t. Astbecomes large, ¢ and ¢* become the dominant terms in the expressions for = and

y, so the graph will look like the graph of y = =*, but with oscillations. These equations are matched with graph IV,

(f) x = %, y= %2;_ Ast — oo, z and y both approach 0. These equations are matched with praph ITT.
29. Asin Example 6, we lety = ¢ and o = ¢ — 3t +¢° and use a t-interval of [—3, 3]. - 3 .
<:.-______.~
=3 3
—
N o

-3
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11.1 Solutions for Lecture

30. Weusezy =%,y =t°andas =t (t—1)%, o =twith —3 < ¢ < 3. 3

There are 3 points of intersection; (0, 0) is fairly obvious. The point in quadrant ITT (
-3

1s approximately (—0.8, —0.4) and the point in quadrant I is approximately 3
(1.1,1.8). J

—3

N @zr=z14+(z2 —x)t, y=wm + (y2 — w1 )t, 0 < ¢ < 1. Clearly the curve passes through P; (1,3 ) whent = 0 and
through Po(x2, y2) whent = 1. For 0 < ¢ < 1, x is strictly between =1 and =, and y is strictly between y; and y». For

¥2 7 W (% — 2;), which is the equation of the line through

rqe — I

every value of ¢, x and y satisfy the relation y — 11 =

Pi(z1,3) and Pa(z2,y2).

Finally, any point (z, i) on that line satisfies V=nh 2753 ; 1f we call that common value ¢, then the given

Yz — 11 Tz — &

parametric equations yield the point (x, y); and any (x, y) on the line between P (z1,v1) and Pa(x2, y2) yields a value of
tin [0, 1]. So the given parametric equations exactly specify the line segment from P (1, 31) to Pa(z2, y2).

M z=-24+3—(-2)t=—2+5tandy=7T+(—1-T)t=T—8tfor0 <t <1

32. For the side of the triangle from A to B, use (z1,31) = (1,1) and (z2,y2) = (4, 2). 6

Hence, the equations are

z=x1+ (2 —m)t=1+(4—- 1)t =14 3¢,
y=mn+m—wn)t=1+2-1)t=1+¢

Graphing x = 1 + 3tandy = 1 + ¢t with 0 < ¢ < 1 gives us the side of the 0 6
triangle from A to B. Similarly, for the side BC we use z = 4 — 3t and y = 2 + 3¢, and for the side AC weusezr =1
and y = 1 + 4¢.

33. The circle ° + (y — 1)® = 4 has center (0, 1) and radius 2, so by Example 4 it can be represented by x = 2 cost,

y =1+ 2sint, 0 < ¢ < 2m. This representation gives us the circle with a counterclockwise orientation starting at (2, 1).

(a) To get a clockwise onientation, we could change the equations fo x = 2cost, y =1 — 2sint, 0 < ¢ < 2m.

(b) To get three times around in the counterclockwise direction, we use the original equations x = 2cost, y = 1 + 2sint with
the domam expanded to 0 < ¢ < €.

(c) To start at (0, 3) using the original equations, we must have 1 = 0; that is, 2cost = 0. Hence, ¢ = Z_ So we use
z=2cost,y=1+2sint, Z <t < STI

Alternatively, if we want ¢ to start at 0, we could change the equations of the curve. For example, we could use

= —2sint,y=1+4+2cost, 0 <t < m
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11.1 Solutions for Lecture

34. (a) Let 2> /a® = sin” t and y* /b® = cos” ¢ to obtain # = a sint and - D ——
y = becost with 0 < £ < 27 as possible parametric equations for the ellipse I b=4
z’fa® +y7 /6" = L. b;:ll

(b) The equations are x = 3sint andy = beost forb € {1,2, 4,8} - : 8
(c) As b increases, the ellipse stretches vertically.
\ J

35. Big circle: It’s centered at (2, 2) with a radius of 2, so by Example 4, parametric equations are

x =24+ 2cost, y=24+2sint, 0<¢t<2m

Small circles: They are centered at (1, 3) and (3, 3) with a radius of 0.1. By Example 4, parametric equations are
{left) x=1+01cost, y=3+0.1sint, 0<¢<2r

and (right) x=34+01cost, y=3+0.1sint, 0<t<2x
Semicircle: It’s the lower half of a circle centered at (2, 2) with radius 1. By Example 4, parametric equations are

x=2+4 lcost, y =24 lsint, T <t < 32w
To get all four graphs on the same screen with a typical graphing calculator, we need to change the last ¢-interval to [0, 27| in
order to match the others. We can do this by changing ¢ to 0.5¢. This change gives us the upper half. There are several ways to
get the lower half—one 1s to change the “4-" to a “—"" in the y-assignment, giving us

z =2 + 1cos(0.5¢), y = 2 — 1sin({0.5¢), 0<t<2mw
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11.1 Solutions for Lecture

36. If you are using a calculator or computer that can overlay graphs (using multiple ¢-infervals), the following 1s approprnate.
Left side: = = 1 and y goes from 1.5 to 4, so use

z=1 y =1, 15 <t<4

Handle: Tt starts at (10, 4) and ends at (13, 7), so use
z=104+¢, y=4+¢t 0<t<3
Left wheel: Tt’s centered at (3, 1), has a radius of 1, and appears to go about 30° above the horizontal, so use

13w

. 5
z =23+ lcost, y =1+ 1sint, T LtL =
Right wheel: Similar to the left wheel with center (8, 1), so use
xr =38+ lcost, y=1+1sint, B—E'EtEHT“

If you are using a calculator or computer that cannot overlay graphs (using one ¢-interval), the following is appropriate.
We’ll start by picking the ¢-interval [0, 2.5] since it easily matches the ¢-values for the two sides. We now need to find
parametric equations for all graphs with 0 < ¢ < 2.5.

Left side: = = 1 and y goes from 1.5 to 4, so use
z=1 y=15+4+t 0<t<25
Right side: = = 10 and y goes from 1.5 to 4, so use

x=10, y=15+¢ 0<t<25
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11.1 Solutions for Lecture

Bottom: x goes from 1 to 10 and y = 1.5, so use

x=1+36t y=15  0<t<25

To get the x-assipnment, think of creating a linear function such that when ¢ = 0, z = 1 and when ¢t = 2.5,
x = 10. We can use the point-slope form of a line with (¢1,z1) = (0, 1) and (¢2, z2) = (2.5, 10).

m—_h(t—ﬂ} = z=1+36t

1=
* 25—

Handle: It starts at (10, 4) and ends at (13, 7), so use

z=10+12t  y=4+12t  0<t<25

(ﬁl,m}=(D,l()}and(tzgz}=(2.5,13}give5usx—]0=%(t—ﬁ} ~ z—10412t

. —4
(t1.31) = (0,4) and (2, y2) = (2.5,7) givesus y — 4 = 2{5_(}(*_0) = y=4+12¢

Left wheel: It’s centered at (3, 1), has a radius of 1, and appears to go about 30° above the horizontal, so use

x=3+1lcos(Zt+ ), y=1+1sin(3Et+2E), 0<t<25
13w _ Bmw
H%)gﬁesusﬂ—%“:%;(t—ﬂ) = 0=°3F4+5%¢

(t1,61) = (0,5F) and (£2,6,) = (3, 5

Right wheel: Similar to the left wheel with center (8, 1), so use
x=8+1lcos(32¢t+22)  y=1+1sin(3Et+25), 0<t<25
b z=1t" = t=z' soy=1t=a*" =23

. @z=+ = t=z% soy=1t*=z""3
Since = = t° > 0, we only get the right half of the

We get the entire curve y = z*/* traversed in a left o

right direction. curve y = 2°/3.
¥ ¥
x=fy=r x=1
y=r* t=0
-
“T<0
0 x 0 x
@z=e=(e)P° [s0e =2 Y
_ e—i!t _ (e—t}Z _ (Iljﬁ'jZ _I2f3 Izﬁ:i,
y= = = = . y=e t==0
Ift < 0, then = and y are both larger than 1. If ¢ > 0, then = and y are between 0 ,}[/
. : . (L1
and 1. Since = >> 0 and y >> 0, the curve never quite reaches the origin_ 0
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11.1 Solutions for Lecture

38. (@) x =t,soy =t~ =z . We get the entire curve y = 1/z” traversed n a
left-to-right direction.

1 1 .
x =cost,y =sec’ t = = —_ Since sect > 1, we o et the L=cost,
® i cos?t  x? - nly g y=sec’t

parts of the curve y = 1/x” withy > 1. We get the first quadrant portion of
the curve when = > 0, that 1s, cos ¢ > 0, and we get the second quadrant
portion of the curve when = < 0, that is, cost < 0.

@ z=¢e" y=e=(e*)"? = 2. Since e’ and e~ are both positive, we

only get the first quadrant portion of the curve y = 1/z°. y=e

39. The case T < @ < « is illustrated. C' has coordinates (r6,r) as in Example 6, ¥
and  has coordinates (r8,r + rcos(m — 8)) = (r8,r(1 — cos §))
[since cos(m — a) = cos 7 cos & + sin 7 sin @ = — cos o], so P has coordmates
(r@ —rsin(m — 8),7(1 — cos 8)) = (r(# — sinf), r(1 — cos §))

[since sin(m — &) = sin 7 cos & — cos 7 sina = sin a]. Again we have the

parametric equations x = (6 — sinf@), y = r(1 — cos 8).

40. The first two diagrams depict the case m << 8 < Z_d < r. As in Example 6, C has coordinates (r6, r). Now @ (in the second
diagram) has coordinates (r8, r 4+ dcos(8# — w)) = (rf,r — d cos #), so a typical pomnt P of the trochoid has coordinates
(r + dsin(8 — 7), r — dcos 8). That is, P has coordinates (z,y), where z = r8 — dsinf and y = r — d cos 8. When
d = r, these equations agree with those of the cycloid.

¥

d=>r

d<r
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11.1 Solutions for Lecture

41. Tt is apparent that + = |OQ| and y = |QP| = |ST|. From the diagram ¥
z = |0Q| = acosf and y = |ST| = bsin §. Thus, the parametric equations are

x = acosf and y = bsin 8. To eliminate # we rearrange: sinf =y/b =

sin?@ = (y/b)’ andcos@ = z/a = cos’# = (z/a)’. Adding the two

equations- sin® 8 + cos® 8 = 1 = 2 /a® + 3 /b* Thus, we have an ellipse.

42. A has coordinates (a cos #, asin #). Since O A is perpendicular to AB, AOAB i1s a right triangle and B has coordinates

(asec@,0). It follows that P has coordinates (asec#, bsin ). Thus, the parametric equations are x = asec 8, y = bsin 8.

43. € = (2acot #, 2a), so the z-coordinate of P 1s = = 2acot . Let B = (0, 2a). Y
2

Then #OAB is a right angle and ZOBA = 6, s0 |OA| = 2asin# and -

A= ((2asinf) cos 8, (2a sin ) sin ). Thus, the y-coordnate of P

15y = 2asin’ 6.

44. (a) Let 6 be the angle of nchnation of segment OP. Then |OB| = 2'1&. LetC = (2a,0). (b) ¥
COs
3a-
Then by use of right triangle O AC we see that |OA| = 2a cos 8. Now 24
a4
(0P| = |AB| = |0B| — |04]
X
1 1 — cos’ § sin® 6 , a
=2a(cosﬁi —CDSB) =2a p—- =2a p— = 2asinf tand —2al r=2a
=3a

So P has coordinates x = 2asin @ tan @ - cos # = 2asin” 6 and
y = 2asin® tanf - sind = 2asin” § tang.
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11.1 Solutions for Lecture

45. (a) 4 There are 2 points of mtersection:

{—3,0) and approxumately (—2.1, 1.4).

—4
(b) A collision point occurs when z1 = x» and y1 = y» for the same ¢. So solve the equations:
3sint = —3 +cost (1)
2cost =1 +sint  (2)
From (2), sint = 2 cost — 1. Substituting into (1), we get 3(2cost — 1) = —3 +cost = dceosi=0 (*) =
cost=0 = t=Zor 2 Wecheckthatt = I satisfies (1) and (2) but £ = Z does not. So the only collision point
occurs when ¢ = 2% and this gives the point (—3, 0). [We could check our work by graphing z1 and x> together as
functions of ¢ and, on another plot, 11 and y2 as functions of ¢. If we do so, we see that the only value of ¢ for which both
pairs of graphs intersectis t = 2 ]
(c) The circle is centered at (3, 1) instead of (—3, 1). There are still 2 intersection points: (3, 0) and (2.1, 1.4), but there are

no collision points, since () in part (b) becomes Scost =6 = cust=% = 1.
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46. (a) If @ = 30° and vy = 500 m/s, then the equations become = = (500 cos 30°)¢ = 250 +/3¢ and
y = (5005in 30°)t — 2(9.8)t* = 250t — 4.9¢*_ y = 0 when ¢ = 0 (when the gun is fired) and again when
t =20 ~ 515 Thenz = (250v/3)(222) ~ 22,092 m, so the bullet hits the ground about 22 km from the gun.

The formula for y is quadratic in ¢. To find the maxinmm y-value, we will complete the square:

y=—29(8 — 20t) = —4.9[" — Bt + (1B)°] + 25 = —19(: - 12)"+ 15

with equality when ¢t = 222 s, so the maximum height attaned 1s % =~ 3189 m.

14,000

(b) As o (0° < a < 90°) increases up to 45°, the projectile attains a
preater height and a preater range. As « increases past 45°, the

projectile attains a greater height, but its range decreases.

0 v X 28,000
a=15°  a=30°

©z=(wcosa)t = t= L

Vg COS x|

2
- 1,2 . & g €T g 2

= (wsina)t — gt = = (wp sln o - = =(tanajr — | ———— |z
y = (vo ) 29 y = (vo )vucosa Q(tmcosa) ( ) (21}3(:052&) ’

which is the equation of a parabola (quadratic in x).

47. x = t* y = t° — ct. We use a graphing device to produce the graphs for various values of ¢ with —7 < ¢ < 7. Note that all
the members of the family are symmetric about the z-axis For ¢ < 0, the graph does not cross itself, but for c = 0 ithas a

cusp at (0, 0) and for ¢ >> 0 the graph crosses itself at z = ¢, so the loop grows larger as c increases.

3 1
1
0
0 15 0 1.5
-3 -1

48. x = 2ct — 4%y = —ct” + 3t*. We use a graphing device to produce the
praphs for various values of ¢ with —w < ¢ < 7. Note that all the members of

the famuly are symmetric about the y-axis. When e < 0, the graph resembles
that of a polynomial of even degree, but when ¢ = 0 there is a corner at the —s <
origin, and when ¢ > 0, the graph crosses itself at the origin, and has two cusps l J

below the z-axis. The size of the “swallowtail” increases as ¢ increases.
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11.1 Solutions for Lecture

49. Note that all the Lissajous fipures are symmetric about the z-axis. The parameters a and b simply stretch the praph in the
z- and y-directions respectively. For « = b = n = 1 the graph 1s simply a circle with radius 1. For n = 2 the graph crosses
itself at the origin and there are loops above and below the z-axis. In general, the figures have n — 1 pomnts of mtersection,
all of which are on the y-axis, and a total of nn closed loops.

2.1 31
'3 - . - . . )
— (@, b)=(3.2) C >t @n=03
—(a, b)=(3,2)

— (a,b) = (2, 1)
2.1 -3l 31

—1 J ) -3.1

a=b=1 n=2 n=3
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