1. $x = 1 +$	\sqrt{t} 2	$t = t^2 - 4$	ı. o	< t < 5	
$1. \ x - 1$	ν <i>ι</i> , <i>y</i>	— t	ω, υ	~ 0 ~ 0	٠.

t	0	1	2	3	4	5
\boldsymbol{x}	1	2	$1 + \sqrt{2}$	$1 + \sqrt{3}$	3	$1+\sqrt{5}$
			2.41	2.73		3.24
\boldsymbol{y}	0	-3	-4	-3	0	5

$$\textbf{2.} \ \ x=2\cos t, \quad y=t-\cos t, \quad 0\leq t\leq 2\pi$$

t	0	$\pi/2$	π	$3\pi/2$	2π
\boldsymbol{x}	2	0	-2	0	2
y	-1	$\pi/2$	$\pi + 1$	$3\pi/2$	$2\pi - 1$
		1.57	4.14	4.71	5.28

3.
$$x = 5\sin t$$
, $y = t^2$, $-\pi \le t \le \pi$

t	$-\pi$	$-\pi/2$	0	$\pi/2$	π
\boldsymbol{x}	0	-5	0	5	0
\boldsymbol{y}	π^2	$\pi^2/4$	0	$\pi^2/4$	π^2
	9.87	2.47		2.47	9.87

4.
$$x = e^{-t} + t$$
, $y = e^{t} - t$, $-2 \le t \le 2$

t	-2	-1	0	1	2
\boldsymbol{x}	e^2-2	e-1	1	$e^{-1} + 1$	$e^{-2} + 2$
	5.39	1.72		1.37	2.14
\boldsymbol{y}	$e^{-2} + 2$	$e^{-1} + 1$	1	e-1	e^2-2
	2.14	1.37		1.72	5.39

5. x = 3t - 5, y = 2t + 1

(a)

t	-2	-1	0	1	2	3	4
\boldsymbol{x}	-11	-8	-5	-2	1	4	7
\boldsymbol{y}	-3	-1	1	3	5	7	9

- (b) $x = 3t 5 \implies 3t = x + 5 \implies t = \frac{1}{3}(x + 5) \implies y = 2 \cdot \frac{1}{3}(x + 5) + 1$, so $y = \frac{2}{3}x + \frac{13}{3}$.
- 6. x = 1 + t, y = 5 2t, $-2 \le t \le 3$

(a)

t	-2	-1	0	1	2	3
\boldsymbol{x}	-1	0	1	2	3	4
\boldsymbol{y}	9	7	5	3	1	-1

- (b) $x=1+t \Rightarrow t=x-1 \Rightarrow y=5-2(x-1),$ so $y=-2x+7, -1 \leq x \leq 4.$
- 7. $x = t^2 2$, y = 5 2t, $-3 \le t \le 4$

(a)

t				0	1	2	3	4
x	7	2	-1	-2	-1	2	7	14
\boldsymbol{y}	11	9	7	5	3	1	-1	-3

- (b) $y = 5 2t \implies 2t = 5 y \implies t = \frac{1}{2}(5 y) \implies$ $x = \left[\frac{1}{2}(5 y)\right]^2 2, \text{ so } x = \frac{1}{4}(5 y)^2 2, \quad -3 \le y \le 11.$
- 8. x = 1 + 3t, $y = 2 t^2$

(a)

t	-3	-2	-1	0	1	2	3
x	-8	-5	-2	1	4	7	10
\boldsymbol{y}	-7	-2	1	2	1	-2	-7

(b) $x = 1 + 3t \implies t = \frac{1}{3}(x - 1) \implies y = 2 - \left[\frac{1}{3}(x - 1)\right]^2$, so $y = -\frac{1}{9}(x - 1)^2 + 2$.

9.
$$x = \sqrt{t}, y = 1 - t$$

(a)

t	0	1	2	3	4
\boldsymbol{x}	0	1	1.414	1.732	2
\boldsymbol{y}	1	0	-1	-2	-3

(b)
$$x=\sqrt{t} \quad \Rightarrow \quad t=x^2 \quad \Rightarrow \quad y=1-t=1-x^2.$$
 Since $t\geq 0, x\geq 0.$

So the curve is the right half of the parabola $y = 1 - x^2$.

(a) ____

t	-2	-1	0	1	2
\boldsymbol{x}	4	1	0	1	4
\boldsymbol{y}	-8	-1	0	1	8

$$\text{(b) } y=t^3 \quad \Rightarrow \quad t=\sqrt[3]{y} \quad \Rightarrow \quad x=t^2=\left(\sqrt[3]{y}\right)^2=y^{2/3}. \quad t\in\mathbb{R}, y\in\mathbb{R}, x\geq 0.$$

11. (a)
$$x = \sin \theta, y = \cos \theta, 0 \le \theta \le \pi$$
.

$$x^2 + y^2 = \sin^2 \theta + \cos^2 \theta = 1$$
. Since $0 \le \theta \le \pi$,

we have $\sin \theta \ge 0$, so $x \ge 0$. Thus, the curve is the

right half of the circle $x^2 + y^2 = 1$.

12. (a) $x=4\cos\theta, y=5\sin\theta, -\pi/2\leq\theta\leq\pi/2$. $\left(\frac{x}{4}\right)^2+\left(\frac{y}{5}\right)^2=\cos^2\theta+\sin^2\theta=1, \text{ which is an ellipse with }x\text{-intercepts }(\pm4,0)\text{ and }y\text{-intercepts }(0,\pm5).$ We obtain the portion of the ellipse with $x\geq0$ since $4\cos\theta\geq0$ for $-\pi/2\leq\theta\leq\pi/2$.

13. (a) $x=\sin t,\,y=\csc t,\,0< t<\frac{\pi}{2}.$ $y=\csc t=\frac{1}{\sin t}=\frac{1}{x}. \text{ For } 0< t<\frac{\pi}{2}, \text{ we have}$ 0< x<1 and y>1. Thus, the curve is the portion of the hyperbola y=1/x with y>1.

14. (a) $x=e^t-1$, $y=e^{2t}$. $y=(e^t)^2=(x+1)^2$ and since x>-1, we have the right side of the parabola $y=(x+1)^2$.

15. (a) $x = e^{2t} \implies 2t = \ln x \implies t = \frac{1}{2} \ln x$. $y = t + 1 = \frac{1}{2} \ln x + 1$.

16. (a) $x = \ln t, y = \sqrt{t}, t \ge 1$.

$$x = \ln t \implies t = e^x \implies y = \sqrt{t} = e^{x/2}, x \ge 0.$$

17. (a) $x=\sinh t,\,y=\cosh t \ \Rightarrow \ y^2-x^2=\cosh^2 t-\sinh^2 t=1.$ Since $y=\cosh t\geq 1,$ we have the upper branch of the hyperbola $y^2-x^2=1.$

(b)

(b)

18. (a) $x=2\cosh t, y=5\sinh t \Rightarrow \frac{x}{2}=\cosh t, \frac{y}{5}=\sinh t \Rightarrow \left(\frac{x}{2}\right)^2=\cosh^2 t, \left(\frac{y}{5}\right)^2=\sinh^2 t.$ Since $\cosh^2 t-\sinh^2 t=1$, we have $\frac{x^2}{4}-\frac{y^2}{25}=1$, a hyperbola. Because $x\geq 2$, we have the right branch of the hyperbola.

19. $x=3+2\cos t, y=1+2\sin t, \pi/2 \le t \le 3\pi/2$. By Example 4 with r=2, h=3, and k=1, the motion of the particle takes place on a circle centered at (3,1) with a radius of 2. As t goes from $\frac{\pi}{2}$ to $\frac{3\pi}{2}$, the particle starts at the point (3,3) and moves counterclockwise to (3,-1) [one-half of a circle].

- 20. $x = 2 \sin t$, $y = 4 + \cos t$ \Rightarrow $\sin t = \frac{x}{2}$, $\cos t = y 4$. $\sin^2 t + \cos^2 t = 1$ \Rightarrow $\left(\frac{x}{2}\right)^2 + (y 4)^2 = 1$. The motion of the particle takes place on an ellipse centered at (0,4). As t goes from 0 to $\frac{3\pi}{2}$, the particle starts at the point (0,5) and moves clockwise to (-2,4) [three-quarters of an ellipse].
- 21. $x = 5 \sin t$, $y = 2 \cos t$ \Rightarrow $\sin t = \frac{x}{5}$, $\cos t = \frac{y}{2}$. $\sin^2 t + \cos^2 t = 1$ \Rightarrow $\left(\frac{x}{5}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$. The motion of the particle takes place on an ellipse centered at (0,0). As t goes from $-\pi$ to 5π , the particle starts at the point (0,-2) and moves clockwise around the ellipse 3 times.
- 22. $y = \cos^2 t = 1 \sin^2 t = 1 x^2$. The motion of the particle takes place on the parabola $y = 1 x^2$. As t goes from -2π to $-\pi$, the particle starts at the point (0,1), moves to (1,0), and goes back to (0,1). As t goes from $-\pi$ to 0, the particle moves to (-1,0) and goes back to (0,1). The particle repeats this motion as t goes from 0 to 2π .
- 23. We must have $1 \le x \le 4$ and $2 \le y \le 3$. So the graph of the curve must be contained in the rectangle [1, 4] by [2, 3].
- 24. (a) From the first graph, we have $1 \le x \le 2$. From the second graph, we have $-1 \le y \le 1$. The only choice that satisfies either of those conditions is III.
 - (b) From the first graph, the values of x cycle through the values from -2 to 2 four times. From the second graph, the values of y cycle through the values from -2 to 2 six times. Choice I satisfies these conditions.
 - (c) From the first graph, the values of x cycle through the values from -2 to 2 three times. From the second graph, we have $0 \le y \le 2$. Choice IV satisfies these conditions.
 - (d) From the first graph, the values of x cycle through the values from -2 to 2 two times. From the second graph, the values of y do the same thing. Choice II satisfies these conditions.
- 25. When t = -1, (x, y) = (0, -1). As t increases to 0, x decreases to -1 and y increases to 0. As t increases from 0 to 1, x increases to 0 and y increases to 1. As t increases beyond 1, both x and y increase. For t < -1, x is positive and decreasing and y is negative and increasing. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.</p>

26. For t<-1, x is positive and decreasing, while y is negative and increasing (these points are in Quadrant IV). When t=-1, (x,y)=(0,0) and, as t increases from -1 to 0, x becomes negative and y increases from 0 to 1. At t=0, (x,y)=(0,1) and, as t increases from 0 to 1, y decreases from 1 to 0 and x is positive. At t=1, (x,y)=(0,0) again, so the loop is completed. For t>1, x and y both

become large negative. This enables us to draw a rough sketch. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.

27. When t=0 we see that x=0 and y=0, so the curve starts at the origin. As t increases from 0 to $\frac{1}{2}$, the graphs show that y increases from 0 to 1 while x increases from 0 to 1, decreases to 0 and to -1, then increases back to 0, so we arrive at the point (0,1). Similarly, as t increases from $\frac{1}{2}$ to 1, y decreases from 1

to 0 while x repeats its pattern, and we arrive back at the origin. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.

28. (a) $x = t^4 - t + 1 = (t^4 + 1) - t > 0$ [think of the graphs of $y = t^4 + 1$ and y = t] and $y = t^2 \ge 0$, so these equations are matched with graph V.

(b) $y = \sqrt{t} \ge 0$. $x = t^2 - 2t = t(t-2)$ is negative for 0 < t < 2, so these equations are matched with graph I.

(c) $x=\sin 2t$ has period $2\pi/2=\pi$. Note that $y(t+2\pi)=\sin[t+2\pi+\sin 2(t+2\pi)]=\sin(t+2\pi+\sin 2t)=\sin(t+\sin 2t)=y(t)$, so y has period 2π . These equations match graph II since x cycles through the values -1 to 1 twice as y cycles through those values once.

(d) $x = \cos 5t$ has period $2\pi/5$ and $y = \sin 2t$ has period π , so x will take on the values -1 to 1, and then 1 to -1, before y takes on the values -1 to 1. Note that when t = 0, (x, y) = (1, 0). These equations are matched with graph VI.

(e) $x = t + \sin 4t$, $y = t^2 + \cos 3t$. As t becomes large, t and t^2 become the dominant terms in the expressions for x and y, so the graph will look like the graph of $y = x^2$, but with oscillations. These equations are matched with graph IV.

(f) $x=\frac{\sin 2t}{4+t^2}, \ y=\frac{\cos 2t}{4+t^2}.$ As $t\to\infty, x$ and y both approach 0. These equations are matched with graph III.

29. As in Example 6, we let y = t and $x = t - 3t^3 + t^5$ and use a t-interval of [-3, 3].

30. We use $x_1 = t$, $y_1 = t^5$ and $x_2 = t (t - 1)^2$, $y_2 = t$ with $-3 \le t \le 3$. There are 3 points of intersection; (0,0) is fairly obvious. The point in quadrant III is approximately (-0.8, -0.4) and the point in quadrant I is approximately (1.1, 1.8).

31. (a) $x = x_1 + (x_2 - x_1)t$, $y = y_1 + (y_2 - y_1)t$, $0 \le t \le 1$. Clearly the curve passes through $P_1(x_1, y_1)$ when t = 0 and through $P_2(x_2, y_2)$ when t = 1. For 0 < t < 1, x is strictly between x_1 and x_2 and y is strictly between y_1 and y_2 . For every value of t, x and y satisfy the relation $y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$, which is the equation of the line through $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$.

Finally, any point (x, y) on that line satisfies $\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$; if we call that common value t, then the given parametric equations yield the point (x, y); and any (x, y) on the line between $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ yields a value of t in [0, 1]. So the given parametric equations exactly specify the line segment from $P_1(x_1, y_1)$ to $P_2(x_2, y_2)$.

(b)
$$x = -2 + [3 - (-2)]t = -2 + 5t$$
 and $y = 7 + (-1 - 7)t = 7 - 8t$ for $0 \le t \le 1$.

32. For the side of the triangle from A to B, use $(x_1, y_1) = (1, 1)$ and $(x_2, y_2) = (4, 2)$. Hence, the equations are

$$x = x_1 + (x_2 - x_1) t = 1 + (4 - 1) t = 1 + 3t,$$

 $y = y_1 + (y_2 - y_1) t = 1 + (2 - 1) t = 1 + t.$

Graphing x = 1 + 3t and y = 1 + t with $0 \le t \le 1$ gives us the side of the triangle from A to B. Similarly, for the side BC we use x = 4 - 3t and y = 2

triangle from A to B. Similarly, for the side BC we use x = 4 - 3t and y = 2 + 3t, and for the side AC we use x = 1 and y = 1 + 4t.

- 33. The circle $x^2 + (y-1)^2 = 4$ has center (0,1) and radius 2, so by Example 4 it can be represented by $x = 2\cos t$, $y = 1 + 2\sin t$, $0 \le t \le 2\pi$. This representation gives us the circle with a counterclockwise orientation starting at (2,1).
 - (a) To get a clockwise orientation, we could change the equations to $x=2\cos t,\,y=1-2\sin t,\,0\leq t\leq 2\pi$
 - (b) To get three times around in the counterclockwise direction, we use the original equations $x=2\cos t,\,y=1+2\sin t$ with the domain expanded to $0\leq t\leq 6\pi$.
 - (c) To start at (0,3) using the original equations, we must have $x_1=0$; that is, $2\cos t=0$. Hence, $t=\frac{\pi}{2}$. So we use $x=2\cos t, y=1+2\sin t, \frac{\pi}{2} \le t \le \frac{3\pi}{2}$.

Alternatively, if we want t to start at 0, we could change the equations of the curve. For example, we could use $x = -2 \sin t$, $y = 1 + 2 \cos t$, $0 \le t \le \pi$.

and

34. (a) Let $x^2/a^2=\sin^2 t$ and $y^2/b^2=\cos^2 t$ to obtain $x=a\sin t$ and $y=b\cos t$ with $0\leq t\leq 2\pi$ as possible parametric equations for the ellipse $x^2/a^2+y^2/b^2=1$.

- (b) The equations are $x = 3 \sin t$ and $y = b \cos t$ for $b \in \{1, 2, 4, 8\}$.
- (c) As b increases, the ellipse stretches vertically.
- 35. Big circle: It's centered at (2, 2) with a radius of 2, so by Example 4, parametric equations are

$$x=2+2\cos t, \qquad y=2+2\sin t, \qquad 0\leq t\leq 2\pi$$

Small circles: They are centered at (1,3) and (3,3) with a radius of 0.1. By Example 4, parametric equations are

(left)
$$x = 1 + 0.1 \cos t$$
, $y = 3 + 0.1 \sin t$, $0 \le t \le 2\pi$
(right) $x = 3 + 0.1 \cos t$, $y = 3 + 0.1 \sin t$, $0 \le t \le 2\pi$

Semicircle: It's the lower half of a circle centered at (2, 2) with radius 1. By Example 4, parametric equations are

$$x = 2 + 1\cos t$$
, $y = 2 + 1\sin t$, $\pi < t < 2\pi$

To get all four graphs on the same screen with a typical graphing calculator, we need to change the last t-interval to $[0, 2\pi]$ in order to match the others. We can do this by changing t to 0.5t. This change gives us the upper half. There are several ways to get the lower half—one is to change the "+" to a "-" in the y-assignment, giving us

$$x = 2 + 1\cos(0.5t),$$
 $y = 2 - 1\sin(0.5t),$ $0 < t < 2\pi$

36. If you are using a calculator or computer that can overlay graphs (using multiple t-intervals), the following is appropriate.

Left side: x = 1 and y goes from 1.5 to 4, so use

$$x = 1,$$
 $y = t,$ $1.5 \le t \le 4$

Right side: x = 10 and y goes from 1.5 to 4, so use

$$x = 10, \quad y = t, \quad 1.5 \le t \le 4$$

Bottom: x goes from 1 to 10 and y = 1.5, so use

$$x = t$$
, $y = 1.5$, $1 \le t \le 10$

Handle: It starts at (10, 4) and ends at (13, 7), so use

$$x = 10 + t$$
, $y = 4 + t$, $0 \le t \le 3$

Left wheel: It's centered at (3, 1), has a radius of 1, and appears to go about 30° above the horizontal, so use

$$x = 3 + 1\cos t$$
, $y = 1 + 1\sin t$, $\frac{5\pi}{6} \le t \le \frac{13\pi}{6}$

Right wheel: Similar to the left wheel with center (8, 1), so use

$$x = 8 + 1\cos t$$
, $y = 1 + 1\sin t$, $\frac{5\pi}{6} \le t \le \frac{13\pi}{6}$

If you are using a calculator or computer that cannot overlay graphs (using one t-interval), the following is appropriate.

We'll start by picking the t-interval [0, 2.5] since it easily matches the t-values for the two sides. We now need to find parametric equations for all graphs with $0 \le t \le 2.5$.

Left side: x = 1 and y goes from 1.5 to 4, so use

$$x = 1,$$
 $y = 1.5 + t,$ $0 \le t \le 2.5$

Right side: x = 10 and y goes from 1.5 to 4, so use

$$x = 10,$$
 $y = 1.5 + t,$ $0 \le t \le 2.5$

Bottom: x goes from 1 to 10 and y = 1.5, so use

$$x = 1 + 3.6t$$
, $y = 1.5$, $0 \le t \le 2.5$

To get the x-assignment, think of creating a linear function such that when t = 0, x = 1 and when t = 2.5, x = 10. We can use the point-slope form of a line with $(t_1, x_1) = (0, 1)$ and $(t_2, x_2) = (2.5, 10)$.

$$x-1 = \frac{10-1}{2.5-0}(t-0) \Rightarrow x = 1+3.6t.$$

Handle: It starts at (10, 4) and ends at (13, 7), so use

$$x = 10 + 1.2t$$
, $y = 4 + 1.2t$, $0 \le t \le 2.5$

$$(t_1, x_1) = (0, 10)$$
 and $(t_2, x_2) = (2.5, 13)$ gives us $x - 10 = \frac{13 - 10}{2.5 - 0}(t - 0)$ $\Rightarrow x = 10 + 1.2t$.

$$(t_1, y_1) = (0, 4)$$
 and $(t_2, y_2) = (2.5, 7)$ gives us $y - 4 = \frac{7 - 4}{2.5 - 0}(t - 0)$ $\Rightarrow y = 4 + 1.2t$.

Left wheel: It's centered at (3, 1), has a radius of 1, and appears to go about 30° above the horizontal, so use

$$x = 3 + 1\cos\left(\frac{8\pi}{15}t + \frac{5\pi}{6}\right), \qquad y = 1 + 1\sin\left(\frac{8\pi}{15}t + \frac{5\pi}{6}\right), \qquad 0 \le t \le 2.5$$

$$(t_1, \theta_1) = (0, \frac{5\pi}{6}) \text{ and } (t_2, \theta_2) = (\frac{5}{2}, \frac{13\pi}{6}) \text{ gives us } \theta - \frac{5\pi}{6} = \frac{\frac{13\pi}{6} - \frac{5\pi}{6}}{\frac{5}{2} - 0}(t - 0) \Rightarrow \theta = \frac{5\pi}{6} + \frac{8\pi}{15}t.$$

Right wheel: Similar to the left wheel with center (8, 1), so use

$$x = 8 + 1\cos\left(\frac{8\pi}{15}t + \frac{5\pi}{6}\right), \qquad y = 1 + 1\sin\left(\frac{8\pi}{15}t + \frac{5\pi}{6}\right), \qquad 0 \le t \le 2.5$$

37. (a)
$$x = t^3 \implies t = x^{1/3}$$
, so $y = t^2 = x^{2/3}$.

We get the entire curve $y = x^{2/3}$ traversed in a left to right direction.

(b)
$$x = t^6 \implies t = x^{1/6}$$
, so $y = t^4 = x^{4/6} = x^{2/3}$.

Since $x = t^6 \ge 0$, we only get the right half of the curve $y = x^{2/3}$.

If t < 0, then x and y are both larger than 1. If t > 0, then x and y are between 0 and 1. Since x > 0 and y > 0, the curve never quite reaches the origin.

38. (a) x=t, so $y=t^{-2}=x^{-2}$. We get the entire curve $y=1/x^2$ traversed in a left-to-right direction.

(b) $x=\cos t, y=\sec^2 t=\frac{1}{\cos^2 t}=\frac{1}{x^2}$. Since $\sec t\geq 1$, we only get the parts of the curve $y=1/x^2$ with $y\geq 1$. We get the first quadrant portion of the curve when x>0, that is, $\cos t>0$, and we get the second quadrant portion of the curve when x<0, that is, $\cos t<0$.

(c) $x = e^t$, $y = e^{-2t} = (e^t)^{-2} = x^{-2}$. Since e^t and e^{-2t} are both positive, we only get the first quadrant portion of the curve $y = 1/x^2$.

39. The case $\frac{\pi}{2} < \theta < \pi$ is illustrated. C has coordinates $(r\theta, r)$ as in Example 6, and Q has coordinates $(r\theta, r + r\cos(\pi - \theta)) = (r\theta, r(1 - \cos\theta))$ [since $\cos(\pi - \alpha) = \cos\pi\cos\alpha + \sin\pi\sin\alpha = -\cos\alpha$], so P has coordinates $(r\theta - r\sin(\pi - \theta), r(1 - \cos\theta)) = (r(\theta - \sin\theta), r(1 - \cos\theta))$ [since $\sin(\pi - \alpha) = \sin\pi\cos\alpha - \cos\pi\sin\alpha = \sin\alpha$]. Again we have the parametric equations $x = r(\theta - \sin\theta), y = r(1 - \cos\theta)$.

40. The first two diagrams depict the case $\pi < \theta < \frac{3\pi}{2}$, d < r. As in Example 6, C has coordinates $(r\theta, r)$. Now Q (in the second diagram) has coordinates $(r\theta, r + d\cos(\theta - \pi)) = (r\theta, r - d\cos\theta)$, so a typical point P of the trochoid has coordinates $(r\theta + d\sin(\theta - \pi), r - d\cos\theta)$. That is, P has coordinates (x, y), where $x = r\theta - d\sin\theta$ and $y = r - d\cos\theta$. When d = r, these equations agree with those of the cycloid.

41. It is apparent that x=|OQ| and y=|QP|=|ST|. From the diagram, $x=|OQ|=a\cos\theta$ and $y=|ST|=b\sin\theta$. Thus, the parametric equations are $x=a\cos\theta$ and $y=b\sin\theta$. To eliminate θ we rearrange: $\sin\theta=y/b \Rightarrow \sin^2\theta=(y/b)^2$ and $\cos\theta=x/a \Rightarrow \cos^2\theta=(x/a)^2$. Adding the two equations: $\sin^2\theta+\cos^2\theta=1=x^2/a^2+y^2/b^2$. Thus, we have an ellipse.

- **42.** A has coordinates $(a \cos \theta, a \sin \theta)$. Since OA is perpendicular to AB, $\triangle OAB$ is a right triangle and B has coordinates $(a \sec \theta, 0)$. It follows that P has coordinates $(a \sec \theta, b \sin \theta)$. Thus, the parametric equations are $x = a \sec \theta$, $y = b \sin \theta$.
- 43. $C = (2a \cot \theta, 2a)$, so the x-coordinate of P is $x = 2a \cot \theta$. Let B = (0, 2a). Then $\angle OAB$ is a right angle and $\angle OBA = \theta$, so $|OA| = 2a \sin \theta$ and $A = ((2a \sin \theta) \cos \theta, (2a \sin \theta) \sin \theta)$. Thus, the y-coordinate of P is $y = 2a \sin^2 \theta$.

44. (a) Let θ be the angle of inclination of segment OP. Then $|OB| = \frac{2a}{\cos \theta}$. Let C = (2a, 0).

Then by use of right triangle OAC we see that $|OA| = 2a \cos \theta$. Now

So P has coordinates $x = 2a \sin \theta \tan \theta \cdot \cos \theta = 2a \sin^2 \theta$ and $y = 2a \sin \theta \tan \theta \cdot \sin \theta = 2a \sin^2 \theta \tan \theta$.

45. (a)

There are 2 points of intersection:

(-3,0) and approximately (-2.1,1.4).

(b) A collision point occurs when $x_1 = x_2$ and $y_1 = y_2$ for the same t. So solve the equations:

$$3\sin t = -3 + \cos t \quad (1)$$

$$2\cos t = 1 + \sin t \tag{2}$$

From (2), $\sin t = 2\cos t - 1$. Substituting into (1), we get $3(2\cos t - 1) = -3 + \cos t \implies 5\cos t = 0 \quad (\star) \implies \cos t = 0 \implies t = \frac{\pi}{2} \text{ or } \frac{3\pi}{2}$. We check that $t = \frac{3\pi}{2}$ satisfies (1) and (2) but $t = \frac{\pi}{2}$ does not. So the only collision point occurs when $t = \frac{3\pi}{2}$, and this gives the point (-3,0). [We could check our work by graphing x_1 and x_2 together as functions of t and, on another plot, y_1 and y_2 as functions of t. If we do so, we see that the only value of t for which both pairs of graphs intersect is $t = \frac{3\pi}{2}$.]

(c) The circle is centered at (3,1) instead of (-3,1). There are still 2 intersection points: (3,0) and (2.1,1.4), but there are no collision points, since (\star) in part (b) becomes $5\cos t = 6 \implies \cos t = \frac{6}{5} > 1$.

46. (a) If $\alpha=30^\circ$ and $v_0=500$ m/s, then the equations become $x=(500\cos 30^\circ)t=250\sqrt{3}t$ and $y=(500\sin 30^\circ)t-\frac{1}{2}(9.8)t^2=250t-4.9t^2$. y=0 when t=0 (when the gun is fired) and again when $t=\frac{250}{4.9}\approx 51$ s. Then $x=\left(250\sqrt{3}\right)\left(\frac{250}{4.9}\right)\approx 22{,}092$ m, so the bullet hits the ground about 22 km from the gun. The formula for y is quadratic in t. To find the maximum y-value, we will complete the square:

$$y = -4.9 \left(t^2 - \tfrac{250}{4.9}t\right) = -4.9 \left[t^2 - \tfrac{250}{4.9}t + \left(\tfrac{125}{4.9}\right)^2\right] + \tfrac{125^2}{4.9} = -4.9 \left(t - \tfrac{125}{4.9}\right)^2 + \tfrac{125^2}{4.9} \leq \tfrac{125^2}{4.9} = -\frac{125^2}{4.9} = -\frac{125^2}{4.9$$

with equality when $t=\frac{125}{4.9}$ s, so the maximum height attained is $\frac{125^2}{4.9}\approx 3189$ m.

As α (0° < α < 90°) increases up to 45°, the projectile attains a greater height and a greater range. As α increases past 45°, the projectile attains a greater height, but its range decreases.

(c)
$$x = (v_0 \cos \alpha)t \implies t = \frac{x}{v_0 \cos \alpha}$$
.

$$y = (v_0 \sin \alpha)t - \frac{1}{2}gt^2 \quad \Rightarrow \quad y = (v_0 \sin \alpha)\frac{x}{v_0 \cos \alpha} - \frac{g}{2}\left(\frac{x}{v_0 \cos \alpha}\right)^2 = (\tan \alpha)x - \left(\frac{g}{2v_0^2 \cos^2 \alpha}\right)x^2,$$

which is the equation of a parabola (quadratic in x).

47. $x = t^2$, $y = t^3 - ct$. We use a graphing device to produce the graphs for various values of c with $-\pi \le t \le \pi$. Note that all the members of the family are symmetric about the x-axis. For c < 0, the graph does not cross itself, but for c = 0 it has a cusp at (0,0) and for c > 0 the graph crosses itself at x = c, so the loop grows larger as c increases.

48. $x=2ct-4t^3$, $y=-ct^2+3t^4$. We use a graphing device to produce the graphs for various values of c with $-\pi \le t \le \pi$. Note that all the members of the family are symmetric about the y-axis. When c<0, the graph resembles that of a polynomial of even degree, but when c=0 there is a corner at the origin, and when c>0, the graph crosses itself at the origin, and has two cusps below the x-axis. The size of the "swallowtail" increases as c increases.

49. Note that all the Lissajous figures are symmetric about the x-axis. The parameters a and b simply stretch the graph in the x- and y-directions respectively. For a=b=n=1 the graph is simply a circle with radius 1. For n=2 the graph crosses itself at the origin and there are loops above and below the x-axis. In general, the figures have n-1 points of intersection, all of which are on the y-axis, and a total of n closed loops.

