1. $x=1+\sqrt{t}, \quad y=t^{2}-4 t, \quad 0 \leq t \leq 5$

t	0	1	2	3	4	5
x	1	2	$1+\sqrt{2}$	$1+\sqrt{3}$	3	$1+\sqrt{5}$
			2.41	2.73		3.24
y	0	-3	-4	-3	0	5

2. $x=2 \cos t, \quad y=t-\cos t, \quad 0 \leq t \leq 2 \pi$

t	0	$\pi / 2$	π	$3 \pi / 2$	2π
x	2	0	-2	0	2
y	-1	$\pi / 2$	$\pi+1$	$3 \pi / 2$	$2 \pi-1$
		1.57	4.14	4.71	5.28

3. $x=5 \sin t, \quad y=t^{2}, \quad-\pi \leq t \leq \pi$

t	$-\pi$	$-\pi / 2$	0	$\pi / 2$	π
x	0	-5	0	5	0
y	π^{2}	$\pi^{2} / 4$	0	$\pi^{2} / 4$	π^{2}
	9.87	2.47		2.47	9.87

4. $x=e^{-t}+t, \quad y=e^{t}-t, \quad-2 \leq t \leq 2$

t	-2	-1	0	1	2
x	$e^{2}-2$	$e-1$	1	$e^{-1}+1$	$e^{-2}+2$
	5.39	1.72		1.37	2.14
y	$e^{-2}+2$	$e^{-1}+1$	1	$e-1$	$e^{2}-2$
	2.14	1.37		1.72	5.39

Page 1
5. $x=3 t-5, \quad y=2 t+1$
(a)

t	-2	-1	0	1	2	3	4
x	-11	-8	-5	-2	1	4	7
y	-3	-1	1	3	5	7	9

(b) $x=3 t-5 \Rightarrow 3 t=x+5 \quad \Rightarrow \quad t=\frac{1}{3}(x+5) \quad \Rightarrow$ $y=2 \cdot \frac{1}{3}(x+5)+1$, so $y=\frac{2}{3} x+\frac{13}{3}$.
6. $x=1+t, \quad y=5-2 t, \quad-2 \leq t \leq 3$
(a)

t	-2	-1	0	1	2	3
x	-1	0	1	2	3	4
y	9	7	5	3	1	-1

(b) $x=1+t \Rightarrow t=x-1 \quad \Rightarrow \quad y=5-2(x-1)$,

$$
\text { so } y=-2 x+7, \quad-1 \leq x \leq 4
$$

7. $x=t^{2}-2, \quad y=5-2 t, \quad-3 \leq t \leq 4$
(a)

t	-3	-2	-1	0	1	2	3	4
x	7	2	-1	-2	-1	2	7	14
y	11	9	7	5	3	1	-1	-3

(b) $y=5-2 t \quad \Rightarrow \quad 2 t=5-y \quad \Rightarrow \quad t=\frac{1}{2}(5-y) \quad \Rightarrow$
$x=\left[\frac{1}{2}(5-y)\right]^{2}-2$, so $x=\frac{1}{4}(5-y)^{2}-2,-3 \leq y \leq 11$.
8. $x=1+3 t, \quad y=2-t^{2}$
(a)

t	-3	-2	-1	0	1	2	3
x	-8	-5	-2	1	4	7	10
y	-7	-2	1	2	1	-2	-7

(b) $x=1+3 t \Rightarrow t=\frac{1}{3}(x-1) \Rightarrow y=2-\left[\frac{1}{3}(x-1)\right]^{2}$,

$$
\text { so } y=-\frac{1}{9}(x-1)^{2}+2
$$

9. $x=\sqrt{t}, y=1-t$
(a)

t	0	1	2	3	4
x	0	1	1.414	1.732	2
y	1	0	-1	-2	-3

(b) $x=\sqrt{t} \Rightarrow t=x^{2} \Rightarrow y=1-t=1-x^{2}$. Since $t \geq 0, x \geq 0$.

So the curve is the right half of the parabola $y=1-x^{2}$.

10. $x=t^{2}, y=t^{3}$
(a)

t	-2	-1	0	1	2
x	4	1	0	1	4
y	-8	-1	0	1	8

(b) $y=t^{3} \Rightarrow t=\sqrt[3]{y} \Rightarrow x=t^{2}=(\sqrt[3]{y})^{2}=y^{2 / 3} . \quad t \in \mathbb{R}, y \in \mathbb{R}, x \geq 0$.

11. (a) $x=\sin \theta, y=\cos \theta, 0 \leq \theta \leq \pi$.
$x^{2}+y^{2}=\sin ^{2} \theta+\cos ^{2} \theta=1$. Since $0 \leq \theta \leq \pi$,
we have $\sin \theta \geq 0$, so $x \geq 0$. Thus, the curve is the
right half of the circle $x^{2}+y^{2}=1$.
(b)

12. (a) $x=4 \cos \theta, y=5 \sin \theta,-\pi / 2 \leq \theta \leq \pi / 2$.
$\left(\frac{x}{4}\right)^{2}+\left(\frac{y}{5}\right)^{2}=\cos ^{2} \theta+\sin ^{2} \theta=1$, which is an ellipse with x-intercepts $(\pm 4,0)$ and y-intercepts $(0, \pm 5)$. We obtain the portion of the ellipse with $x \geq 0$ since $4 \cos \theta \geq 0$ for $-\pi / 2 \leq \theta \leq \pi / 2$.
(b)

13. (a) $x=\sin t, y=\csc t, 0<t<\frac{\pi}{2}$.
$y=\csc t=\frac{1}{\sin t}=\frac{1}{x}$. For $0<t<\frac{\pi}{2}$, we have
$0<x<1$ and $y>1$. Thus, the curve is the portion of the hyperbola $y=1 / x$ with $y>1$.
(b)

14. (a) $x=e^{t}-1, y=e^{2 t} . \quad y=\left(e^{t}\right)^{2}=(x+1)^{2}$ and since $x>-1$, we have the right side of the parabola $y=(x+1)^{2}$.
(b)

15. (a) $x=e^{2 t} \Rightarrow 2 t=\ln x \quad \Rightarrow \quad t=\frac{1}{2} \ln x$.
$y=t+1=\frac{1}{2} \ln x+1$.
(b)

16. (a) $x=\ln t, y=\sqrt{t}, t \geq 1$.
$x=\ln t \Rightarrow t=e^{x} \Rightarrow y=\sqrt{t}=e^{x / 2}, x \geq 0$.
(b)

17. (a) $x=\sinh t, y=\cosh t \Rightarrow y^{2}-x^{2}=\cosh ^{2} t-\sinh ^{2} t=1$. Since $y=\cosh t \geq 1$, we have the upper branch of the hyperbola $y^{2}-x^{2}=1$.
(b)

18. (a) $x=2 \cosh t, y=5 \sinh t \Rightarrow \frac{x}{2}=\cosh t, \frac{y}{5}=\sinh t \Rightarrow$ $\left(\frac{x}{2}\right)^{2}=\cosh ^{2} t,\left(\frac{y}{5}\right)^{2}=\sinh ^{2} t$. Since $\cosh ^{2} t-\sinh ^{2} t=1$, we have $\frac{x^{2}}{4}-\frac{y^{2}}{25}=1$, a hyperbola. Because $x \geq 2$, we have the right branch of the hyperbola.
(b)

19. $x=3+2 \cos t, y=1+2 \sin t, \pi / 2 \leq t \leq 3 \pi / 2$. By Example 4 with $r=2, h=3$, and $k=1$, the motion of the particle takes place on a circle centered at $(3,1)$ with a radius of 2 . As t goes from $\frac{\pi}{2}$ to $\frac{3 \pi}{2}$, the particle starts at the point $(3,3)$ and moves counterclockwise to $(3,-1)$ [one-half of a circle].

Page 5

11.1 Solutions for Lecture

20. $x=2 \sin t, y=4+\cos t \Rightarrow \sin t=\frac{x}{2}, \cos t=y-4 . \quad \sin ^{2} t+\cos ^{2} t=1 \Rightarrow\left(\frac{x}{2}\right)^{2}+(y-4)^{2}=1$. The motion of the particle takes place on an ellipse centered at $(0,4)$. As t goes from 0 to $\frac{3 \pi}{2}$, the particle starts at the point $(0,5)$ and moves clockwise to $(-2,4)$ [three-quarters of an ellipse].
21. $x=5 \sin t, y=2 \cos t \Rightarrow \sin t=\frac{x}{5}, \cos t=\frac{y}{2} \cdot \sin ^{2} t+\cos ^{2} t=1 \Rightarrow\left(\frac{x}{5}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1$. The motion of the particle takes place on an ellipse centered at $(0,0)$. As t goes from $-\pi$ to 5π, the particle starts at the point $(0,-2)$ and moves clockwise around the ellipse 3 times.
22. $y=\cos ^{2} t=1-\sin ^{2} t=1-x^{2}$. The motion of the particle takes place on the parabola $y=1-x^{2}$. As t goes from -2π to $-\pi$, the particle starts at the point $(0,1)$, moves to $(1,0)$, and goes back to $(0,1)$. As t goes from $-\pi$ to 0 , the particle moves to $(-1,0)$ and goes back to $(0,1)$. The particle repeats this motion as t goes from 0 to 2π.
23. We must have $1 \leq x \leq 4$ and $2 \leq y \leq 3$. So the graph of the curve must be contained in the rectangle $[1,4]$ by $[2,3]$.
24. (a) From the first graph, we have $1 \leq x \leq 2$. From the second graph, we have $-1 \leq y \leq 1$. The only choice that satisfies either of those conditions is III.
(b) From the first graph, the values of x cycle through the values from -2 to 2 four times. From the second graph, the values of y cycle through the values from -2 to 2 six times. Choice I satisfies these conditions.
(c) From the first graph, the values of x cycle through the values from -2 to 2 three times. From the second graph, we have $0 \leq y \leq 2$. Choice IV satisfies these conditions.
(d) From the first graph, the values of x cycle through the values from -2 to 2 two times. From the second graph, the values of y do the same thing. Choice II satisfies these conditions.
25. When $t=-1,(x, y)=(0,-1)$. As t increases to $0, x$ decreases to -1 and y increases to 0 . As t increases from 0 to $1, x$ increases to 0 and y increases to 1 . As t increases beyond 1 , both x and y increase. For $t<-1, x$ is positive and decreasing and y is negative and increasing. We could achieve greater accuracy by estimating x - and y-values for selected values of t from the given graphs and plotting the corresponding points.

11.1 Solutions for Lecture

26. For $t<-1, x$ is positive and decreasing, while y is negative and increasing (these points are in Quadrant IV). When $t=-1,(x, y)=(0,0)$ and, as t increases from -1 to $0, x$ becomes negative and y increases from 0 to 1 . At $t=0,(x, y)=(0,1)$ and, as t increases from 0 to $1, y$ decreases from 1 to 0 and x is positive. At $t=1,(x, y)=(0,0)$ again, so the loop is completed. For $t>1, x$ and y both
 become large negative. This enables us to draw a rough sketch. We could achieve greater accuracy by estimating x - and y-values for selected values of t from the given graphs and plotting the corresponding points.
27. When $t=0$ we see that $x=0$ and $y=0$, so the curve starts at the origin. As t increases from 0 to $\frac{1}{2}$, the graphs show that y increases from 0 to 1 while x increases from 0 to 1 , decreases to 0 and to -1 , then increases back to 0 , so we arrive at the point $(0,1)$. Similarly, as t increases from $\frac{1}{2}$ to $1, y$ decreases from 1
 to 0 while x repeats its pattern, and we arrive back at the origin. We could achieve greater accuracy by estimating x - and y-values for selected values of t from the given graphs and plotting the corresponding points.
28. (a) $x=t^{4}-t+1=\left(t^{4}+1\right)-t>0$ [think of the graphs of $y=t^{4}+1$ and $y=t$] and $y=t^{2} \geq 0$, so these equations are matched with graph V .
(b) $y=\sqrt{t} \geq 0 . \quad x=t^{2}-2 t=t(t-2)$ is negative for $0<t<2$, so these equations are matched with graph I .
(c) $x=\sin 2 t$ has period $2 \pi / 2=\pi$. Note that
$y(t+2 \pi)=\sin [t+2 \pi+\sin 2(t+2 \pi)]=\sin (t+2 \pi+\sin 2 t)=\sin (t+\sin 2 t)=y(t)$, so y has period 2π.
These equations match graph II since x cycles through the values -1 to 1 twice as y cycles through those values once.
(d) $x=\cos 5 t$ has period $2 \pi / 5$ and $y=\sin 2 t$ has period π, so x will take on the values -1 to 1 , and then 1 to -1 , before y takes on the values -1 to 1 . Note that when $t=0,(x, y)=(1,0)$. These equations are matched with graph VI.
(e) $x=t+\sin 4 t, y=t^{2}+\cos 3 t$. As t becomes large, t and t^{2} become the dominant terms in the expressions for x and y, so the graph will look like the graph of $y=x^{2}$, but with oscillations. These equations are matched with graph IV.
(f) $x=\frac{\sin 2 t}{4+t^{2}}, y=\frac{\cos 2 t}{4+t^{2}} . \quad$ As $t \rightarrow \infty, x$ and y both approach 0 . These equations are matched with graph III.
29. As in Example 6, we let $y=t$ and $x=t-3 t^{3}+t^{5}$ and use a t-interval of $[-3,3]$.

Page 7

11.1 Solutions for Lecture

30. We use $x_{1}=t, y_{1}=t^{5}$ and $x_{2}=t(t-1)^{2}, y_{2}=t$ with $-3 \leq t \leq 3$.

There are 3 points of intersection; $(0,0)$ is fairly obvious. The point in quadrant III is approximately $(-0.8,-0.4)$ and the point in quadrant I is approximately $(1.1,1.8)$.

31. (a) $x=x_{1}+\left(x_{2}-x_{1}\right) t, y=y_{1}+\left(y_{2}-y_{1}\right) t, 0 \leq t \leq 1$. Clearly the curve passes through $P_{1}\left(x_{1}, y_{1}\right)$ when $t=0$ and through $P_{2}\left(x_{2}, y_{2}\right)$ when $t=1$. For $0<t<1, x$ is strictly between x_{1} and x_{2} and y is strictly between y_{1} and y_{2}. For every value of t, x and y satisfy the relation $y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$, which is the equation of the line through $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$.

Finally, any point (x, y) on that line satisfies $\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}$; if we call that common value t, then the given parametric equations yield the point (x, y); and any (x, y) on the line between $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ yields a value of t in $[0,1]$. So the given parametric equations exactly specify the line segment from $P_{1}\left(x_{1}, y_{1}\right)$ to $P_{2}\left(x_{2}, y_{2}\right)$.
(b) $x=-2+[3-(-2)] t=-2+5 t$ and $y=7+(-1-7) t=7-8 t$ for $0 \leq t \leq 1$.
32. For the side of the triangle from A to B, use $\left(x_{1}, y_{1}\right)=(1,1)$ and $\left(x_{2}, y_{2}\right)=(4,2)$. Hence, the equations are

$$
\begin{aligned}
& x=x_{1}+\left(x_{2}-x_{1}\right) t=1+(4-1) t=1+3 t \\
& y=y_{1}+\left(y_{2}-y_{1}\right) t=1+(2-1) t=1+t
\end{aligned}
$$

Graphing $x=1+3 t$ and $y=1+t$ with $0 \leq t \leq 1$ gives us the side of the

triangle from A to B. Similarly, for the side $B C$ we use $x=4-3 t$ and $y=2+3 t$, and for the side $A C$ we use $x=1$ and $y=1+4 t$.
33. The circle $x^{2}+(y-1)^{2}=4$ has center $(0,1)$ and radius 2 , so by Example 4 it can be represented by $x=2 \cos t$, $y=1+2 \sin t, 0 \leq t \leq 2 \pi$. This representation gives us the circle with a counterclockwise orientation starting at $(2,1)$.
(a) To get a clockwise orientation, we could change the equations to $x=2 \cos t, y=1-2 \sin t, 0 \leq t \leq 2 \pi$.
(b) To get three times around in the counterclockwise direction, we use the original equations $x=2 \cos t, y=1+2 \sin t$ with the domain expanded to $0 \leq t \leq 6 \pi$.
(c) To start at $(0,3)$ using the original equations, we must have $x_{1}=0$; that is, $2 \cos t=0$. Hence, $t=\frac{\pi}{2}$. So we use $x=2 \cos t, y=1+2 \sin t, \frac{\pi}{2} \leq t \leq \frac{3 \pi}{2}$.

Alternatively, if we want t to start at 0 , we could change the equations of the curve. For example, we could use $x=-2 \sin t, y=1+2 \cos t, 0 \leq t \leq \pi$.

Page 8

11.1 Solutions for Lecture

34. (a) Let $x^{2} / a^{2}=\sin ^{2} t$ and $y^{2} / b^{2}=\cos ^{2} t$ to obtain $x=a \sin t$ and $y=b \cos t$ with $0 \leq t \leq 2 \pi$ as possible parametric equations for the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$.
(b) The equations are $x=3 \sin t$ and $y=b \cos t$ for $b \in\{1,2,4,8\}$.
(c) As b increases, the ellipse stretches vertically.

35. Big circle: It's centered at $(2,2)$ with a radius of 2 , so by Example 4, parametric equations are

$$
x=2+2 \cos t, \quad y=2+2 \sin t, \quad 0 \leq t \leq 2 \pi
$$

Small circles: They are centered at $(1,3)$ and $(3,3)$ with a radius of 0.1 . By Example 4 , parametric equations are
and

$$
\begin{array}{llll}
\text { (left) } & x=1+0.1 \cos t, & y=3+0.1 \sin t, & 0 \leq t \leq 2 \pi \\
\text { (right) } & x=3+0.1 \cos t, & y=3+0.1 \sin t, & 0 \leq t \leq 2 \pi
\end{array}
$$

Semicircle: It's the lower half of a circle centered at $(2,2)$ with radius 1 . By Example 4, parametric equations are

$$
x=2+1 \cos t, \quad y=2+1 \sin t, \quad \pi \leq t \leq 2 \pi
$$

To get all four graphs on the same screen with a typical graphing calculator, we need to change the last t-interval to $[0,2 \pi]$ in order to match the others. We can do this by changing t to $0.5 t$. This change gives us the upper half. There are several ways to get the lower half-one is to change the " + " to a " - " in the y-assignment, giving us

$$
x=2+1 \cos (0.5 t), \quad y=2-1 \sin (0.5 t), \quad 0 \leq t \leq 2 \pi
$$

11.1 Solutions for Lecture

36. If you are using a calculator or computer that can overlay graphs (using multiple t-intervals), the following is appropriate.

Left side: $x=1$ and y goes from 1.5 to 4 , so use

$$
x=1, \quad y=t, \quad 1.5 \leq t \leq 4
$$

Right side: $x=10$ and y goes from 1.5 to 4 , so use

$$
x=10, \quad y=t, \quad 1.5 \leq t \leq 4
$$

Bottom: x goes from 1 to 10 and $y=1.5$, so use

$$
x=t, \quad y=1.5, \quad 1 \leq t \leq 10
$$

Handle: It starts at $(10,4)$ and ends at $(13,7)$, so use

$$
x=10+t, \quad y=4+t, \quad 0 \leq t \leq 3
$$

Left wheel: It's centered at $(3,1)$, has a radius of 1 , and appears to go about 30° above the horizontal, so use

$$
x=3+1 \cos t, \quad y=1+1 \sin t, \quad \frac{5 \pi}{6} \leq t \leq \frac{13 \pi}{6}
$$

Right wheel: Similar to the left wheel with center $(8,1)$, so use

$$
x=8+1 \cos t, \quad y=1+1 \sin t, \quad \frac{5 \pi}{6} \leq t \leq \frac{13 \pi}{6}
$$

If you are using a calculator or computer that cannot overlay graphs (using one t-interval), the following is appropriate. We'll start by picking the t-interval $[0,2.5]$ since it easily matches the t-values for the two sides. We now need to find parametric equations for all graphs with $0 \leq t \leq 2.5$.

Left side: $x=1$ and y goes from 1.5 to 4 , so use

$$
x=1, \quad y=1.5+t, \quad 0 \leq t \leq 2.5
$$

Right side: $x=10$ and y goes from 1.5 to 4 , so use

$$
x=10, \quad y=1.5+t, \quad 0 \leq t \leq 2.5
$$

11.1 Solutions for Lecture

Bottom: x goes from 1 to 10 and $y=1.5$, so use

$$
x=1+3.6 t, \quad y=1.5, \quad 0 \leq t \leq 2.5
$$

To get the x-assignment, think of creating a linear function such that when $t=0, x=1$ and when $t=2.5$, $x=10$. We can use the point-slope form of a line with $\left(t_{1}, x_{1}\right)=(0,1)$ and $\left(t_{2}, x_{2}\right)=(2.5,10)$.

$$
x-1=\frac{10-1}{2.5-0}(t-0) \Rightarrow x=1+3.6 t
$$

Handle: It starts at $(10,4)$ and ends at $(13,7)$, so use

$$
\begin{gathered}
x=10+1.2 t, \quad y=4+1.2 t, \quad 0 \leq t \leq 2.5 \\
\left(t_{1}, x_{1}\right)=(0,10) \text { and }\left(t_{2}, x_{2}\right)=(2.5,13) \text { gives us } x-10=\frac{13-10}{2.5-0}(t-0) \Rightarrow x=10+1.2 t . \\
\left(t_{1}, y_{1}\right)=(0,4) \text { and }\left(t_{2}, y_{2}\right)=(2.5,7) \text { gives us } y-4=\frac{7-4}{2.5-0}(t-0) \Rightarrow y=4+1.2 t .
\end{gathered}
$$

Left wheel: It's centered at $(3,1)$, has a radius of 1 , and appears to go about 30° above the horizontal, so use

$$
\begin{gathered}
x=3+1 \cos \left(\frac{8 \pi}{15} t+\frac{5 \pi}{6}\right), \quad y=1+1 \sin \left(\frac{8 \pi}{15} t+\frac{5 \pi}{6}\right), \quad 0 \leq t \leq 2.5 \\
\left(t_{1}, \theta_{1}\right)=\left(0, \frac{5 \pi}{6}\right) \text { and }\left(t_{2}, \theta_{2}\right)=\left(\frac{5}{2}, \frac{13 \pi}{6}\right) \text { gives us } \theta-\frac{5 \pi}{6}=\frac{\frac{13 \pi}{6}-\frac{5 \pi}{6}}{\frac{5}{2}-0}(t-0) \Rightarrow \theta=\frac{5 \pi}{6}+\frac{8 \pi}{15} t .
\end{gathered}
$$

Right wheel: Similar to the left wheel with center $(8,1)$, so use

$$
x=8+1 \cos \left(\frac{8 \pi}{15} t+\frac{5 \pi}{6}\right), \quad y=1+1 \sin \left(\frac{8 \pi}{15} t+\frac{5 \pi}{6}\right), \quad 0 \leq t \leq 2.5
$$

37. (a) $x=t^{3} \Rightarrow t=x^{1 / 3}$, so $y=t^{2}=x^{2 / 3}$.

We get the entire curve $y=x^{2 / 3}$ traversed in a left to right direction.

(c) $x=e^{-3 t}=\left(e^{-t}\right)^{3} \quad\left[\right.$ so $\left.e^{-t}=x^{1 / 3}\right]$,
$y=e^{-2 t}=\left(e^{-t}\right)^{2}=\left(x^{1 / 3}\right)^{2}=x^{2 / 3}$.
If $t<0$, then x and y are both larger than 1 . If $t>0$, then x and y are between 0 and 1. Since $x>0$ and $y>0$, the curve never quite reaches the origin.
 Since $x=t^{6} \geq 0$, we only get the right half of the curve $y=x^{2 / 3}$.

11.1 Solutions for Lecture

38. (a) $x=t$, so $y=t^{-2}=x^{-2}$. We get the entire curve $y=1 / x^{2}$ traversed in a left-to-right direction.

(b) $x=\cos t, y=\sec ^{2} t=\frac{1}{\cos ^{2} t}=\frac{1}{x^{2}}$. Since $\sec t \geq 1$, we only get the parts of the curve $y=1 / x^{2}$ with $y \geq 1$. We get the first quadrant portion of the curve when $x>0$, that is, $\cos t>0$, and we get the second quadrant portion of the curve when $x<0$, that is, $\cos t<0$.

(c) $x=e^{t}, y=e^{-2 t}=\left(e^{t}\right)^{-2}=x^{-2}$. Since e^{t} and $e^{-2 t}$ are both positive, we only get the first quadrant portion of the curve $y=1 / x^{2}$.

39. The case $\frac{\pi}{2}<\theta<\pi$ is illustrated. C has coordinates $(r \theta, r)$ as in Example 6, and Q has coordinates $(r \theta, r+r \cos (\pi-\theta))=(r \theta, r(1-\cos \theta))$ [since $\cos (\pi-\alpha)=\cos \pi \cos \alpha+\sin \pi \sin \alpha=-\cos \alpha$], so P has coordinates $(r \theta-r \sin (\pi-\theta), r(1-\cos \theta))=(r(\theta-\sin \theta), r(1-\cos \theta))$ [since $\sin (\pi-\alpha)=\sin \pi \cos \alpha-\cos \pi \sin \alpha=\sin \alpha$]. Again we have the
 parametric equations $x=r(\theta-\sin \theta), y=r(1-\cos \theta)$.
40. The first two diagrams depict the case $\pi<\theta<\frac{3 \pi}{2}, d<r$. As in Example $6, C$ has coordinates $(r \theta, r)$. Now Q (in the second diagram) has coordinates $(r \theta, r+d \cos (\theta-\pi))=(r \theta, r-d \cos \theta)$, so a typical point P of the trochoid has coordinates $(r \theta+d \sin (\theta-\pi), r-d \cos \theta)$. That is, P has coordinates (x, y), where $x=r \theta-d \sin \theta$ and $y=r-d \cos \theta$. When $d=r$, these equations agree with those of the cycloid.

11.1 Solutions for Lecture

41. It is apparent that $x=|O Q|$ and $y=|Q P|=|S T|$. From the diagram, $x=|O Q|=a \cos \theta$ and $y=|S T|=b \sin \theta$. Thus, the parametric equations are $x=a \cos \theta$ and $y=b \sin \theta$. To eliminate θ we rearrange: $\sin \theta=y / b \Rightarrow$ $\sin ^{2} \theta=(y / b)^{2}$ and $\cos \theta=x / a \Rightarrow \cos ^{2} \theta=(x / a)^{2}$. Adding the two equations: $\sin ^{2} \theta+\cos ^{2} \theta=1=x^{2} / a^{2}+y^{2} / b^{2}$. Thus, we have an ellipse.

42. A has coordinates $(a \cos \theta, a \sin \theta)$. Since $O A$ is perpendicular to $A B, \triangle O A B$ is a right triangle and B has coordinates $(a \sec \theta, 0)$. It follows that P has coordinates $(a \sec \theta, b \sin \theta)$. Thus, the parametric equations are $x=a \sec \theta, y=b \sin \theta$.
43. $C=(2 a \cot \theta, 2 a)$, so the x-coordinate of P is $x=2 a \cot \theta$. Let $B=(0,2 a)$.

Then $\angle O A B$ is a right angle and $\angle O B A=\theta$, so $|O A|=2 a \sin \theta$ and $A=((2 a \sin \theta) \cos \theta,(2 a \sin \theta) \sin \theta)$. Thus, the y-coordinate of P is $y=2 a \sin ^{2} \theta$.

44. (a) Let θ be the angle of inclination of segment $O P$. Then $|O B|=\frac{2 a}{\cos \theta}$. Let $C=(2 a, 0)$. Then by use of right triangle $O A C$ we see that $|O A|=2 a \cos \theta$. Now

$$
\begin{aligned}
|O P| & =|A B|=|O B|-|O A| \\
& =2 a\left(\frac{1}{\cos \theta}-\cos \theta\right)=2 a \frac{1-\cos ^{2} \theta}{\cos \theta}=2 a \frac{\sin ^{2} \theta}{\cos \theta}=2 a \sin \theta \tan \theta
\end{aligned}
$$

So P has coordinates $x=2 a \sin \theta \tan \theta \cdot \cos \theta=2 a \sin ^{2} \theta$ and
(b)
 $y=2 a \sin \theta \tan \theta \cdot \sin \theta=2 a \sin ^{2} \theta \tan \theta$.
45. (a)

There are 2 points of intersection: $(-3,0)$ and approximately $(-2.1,1.4)$.
(b) A collision point occurs when $x_{1}=x_{2}$ and $y_{1}=y_{2}$ for the same t. So solve the equations:

$$
\begin{align*}
& 3 \sin t=-3+\cos t \tag{1}\\
& 2 \cos t=1+\sin t \tag{2}
\end{align*}
$$

From (2), $\sin t=2 \cos t-1$. Substituting into (1), we get $3(2 \cos t-1)=-3+\cos t \Rightarrow 5 \cos t=0 \quad(\star) \Rightarrow$ $\cos t=0 \Rightarrow t=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$. We check that $t=\frac{3 \pi}{2}$ satisfies (1) and (2) but $t=\frac{\pi}{2}$ does not. So the only collision point occurs when $t=\frac{3 \pi}{2}$, and this gives the point $(-3,0)$. [We could check our work by graphing x_{1} and x_{2} together as functions of t and, on another plot, y_{1} and y_{2} as functions of t. If we do so, we see that the only value of t for which both pairs of graphs intersect is $t=\frac{3 \pi}{2}$.]
(c) The circle is centered at $(3,1)$ instead of $(-3,1)$. There are still 2 intersection points: $(3,0)$ and $(2.1,1.4)$, but there are no collision points, since (\star) in part (b) becomes $5 \cos t=6 \Rightarrow \cos t=\frac{6}{5}>1$.

11.1 Solutions for Lecture

46. (a) If $\alpha=30^{\circ}$ and $v_{0}=500 \mathrm{~m} / \mathrm{s}$, then the equations become $x=\left(500 \cos 30^{\circ}\right) t=250 \sqrt{3} t$ and $y=\left(500 \sin 30^{\circ}\right) t-\frac{1}{2}(9.8) t^{2}=250 t-4.9 t^{2} . y=0$ when $t=0$ (when the gun is fired) and again when $t=\frac{250}{4.9} \approx 51 \mathrm{~s}$. Then $x=(250 \sqrt{3})\left(\frac{250}{4.9}\right) \approx 22,092 \mathrm{~m}$, so the bullet hits the ground about 22 km from the gun. The formula for y is quadratic in t. To find the maximum y-value, we will complete the square:

$$
y=-4.9\left(t^{2}-\frac{250}{4.9} t\right)=-4.9\left[t^{2}-\frac{250}{4.9} t+\left(\frac{125}{4.9}\right)^{2}\right]+\frac{125^{2}}{4.9}=-4.9\left(t-\frac{125}{4.9}\right)^{2}+\frac{125^{2}}{4.9} \leq \frac{125^{2}}{4.9}
$$

with equality when $t=\frac{125}{4.9} \mathrm{~s}$, so the maximum height attained is $\frac{125^{2}}{4.9} \approx 3189 \mathrm{~m}$.
(b)

As $\alpha\left(0^{\circ}<\alpha<90^{\circ}\right)$ increases up to 45°, the projectile attains a greater height and a greater range. As α increases past 45°, the projectile attains a greater height, but its range decreases.
(c) $x=\left(v_{0} \cos \alpha\right) t \Rightarrow t=\frac{x}{v_{0} \cos \alpha}$.

$$
y=\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2} \Rightarrow y=\left(v_{0} \sin \alpha\right) \frac{x}{v_{0} \cos \alpha}-\frac{g}{2}\left(\frac{x}{v_{0} \cos \alpha}\right)^{2}=(\tan \alpha) x-\left(\frac{g}{2 v_{0}^{2} \cos ^{2} \alpha}\right) x^{2},
$$

which is the equation of a parabola (quadratic in x).
47. $x=t^{2}, y=t^{3}-c t$. We use a graphing device to produce the graphs for various values of c with $-\pi \leq t \leq \pi$. Note that all the members of the family are symmetric about the x-axis. For $c<0$, the graph does not cross itself, but for $c=0$ it has a cusp at $(0,0)$ and for $c>0$ the graph crosses itself at $x=c$, so the loop grows larger as c increases.

48. $x=2 c t-4 t^{3}, y=-c t^{2}+3 t^{4}$. We use a graphing device to produce the graphs for various values of c with $-\pi \leq t \leq \pi$. Note that all the members of the family are symmetric about the y-axis. When $c<0$, the graph resembles that of a polynomial of even degree, but when $c=0$ there is a corner at the origin, and when $c>0$, the graph crosses itself at the origin, and has two cusps below the x-axis. The size of the "swallowtail" increases as c increases.

11.1 Solutions for Lecture

49. Note that all the Lissajous figures are symmetric about the x-axis. The parameters a and b simply stretch the graph in the x - and y-directions respectively. For $a=b=n=1$ the graph is simply a circle with radius 1 . For $n=2$ the graph crosses itself at the origin and there are loops above and below the x-axis. In general, the figures have $n-1$ points of intersection, all of which are on the y-axis, and a total of n closed loops.

$a=b=1$

$n=2$

$n=3$
