17-20 Find the points on the curve where the tangent is horizontal or vertical. If you have a graphing device, graph the curve to check your work.

#26. Graph the curve
$$x = \cos t + 2 \cos 2t$$
, $y = \sin t + 2 \sin 2t$ to discover where it crosses itself. Then find equations of both tangents at that point.

Might guess $t = \frac{\pi}{2}$, $\frac{3\pi}{2}$ with Iedi Celculdon tangents at that point.

Might guess $(x,y) = (-2,0)$ by giving it to thicks.

Might guess $(x,y) = (-2,0)$ by giving it to the dank side.

 $x = \cos t + 2 \cos(2t) = -2$
 $\Rightarrow \cos t + 2 \left[2\cos^2 t - 1 \right] = -2$
 $\Rightarrow \cos t \left[4\cos^2 t + \cos t - 2 = -2 \right]$
 $\Rightarrow \cot t + 2\sin(2t)$
 $\Rightarrow \cot t + 2\cos(2t)$
 $\Rightarrow \cot t + 2\sin(2t)$
 $\Rightarrow \cot t + 2\sin(2t)$

- **27.** (a) Find the slope of the tangent line to the trochoid $x = r\theta d\sin\theta$, $y = r d\cos\theta$ in terms of θ . (See Exercise 40 in Section 11.1.)
 - (b) Show that if d < r, then the trochoid does not have a vertical tangent.

- 28. (a) Find the slope of the tangent to the astroid $x = a \cos^3 \theta$, $y = a \sin^3 \theta$ in terms of θ . (Astroids are explored in the Laboratory Project on page 665.)
 - (b) At what points is the tangent horizontal or vertical?
 - (c) At what points does the tangent have slope 1 or -1?

29. At what points on the curve $x = 2t^3$, $y = 1 + 4t - t^2$ does the tangent line have slope 1?

30. Find equations of the tangents to the curve $x = 3t^2 + 1$, $y = 2t^3 + 1$ that pass through the point (4, 3).

31. Use the parametric equations of an ellipse, $x = a \cos \theta$, $y = b \sin \theta$, $0 \le \theta \le 2\pi$, to find the area that it encloses.

AREAS
$$A = \int_{a}^{b} y \, dx = \int_{\alpha}^{\beta} g(t) f'(t) \, dt \qquad \left[\text{or } \int_{\beta}^{\alpha} g(t) f'(t) \, dt \right]$$

32. Find the area enclosed by the curve $x = t^2 - 2t$, $y = \sqrt{t}$ and the y-axis.

33. Find the area enclosed by the x-axis and the curve $x = 1 + e^t$, $y = t - t^2$.

ARC LENGTH

Recall, from Section 9.1:

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$

Also, recall, that this model for Arc Length assumes that the derivative is continuous.

We already know how to find the length L of a curve C given in the form y = F(x), $a \le x \le b$. Formula 9.1.3 says that if F' is continuous, then

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$

Suppose that C can also be described by the parametric equations x = f(t) and y = g(t), $\alpha \le t \le \beta$, where dx/dt = f'(t) > 0. This means that C is traversed once, from left to right, as t increases from α to β and $f(\alpha) = a$, $f(\beta) = b$. Putting Formula 2 into Formula 3 and using the Substitution Rule, we obtain

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = \int_{\alpha}^{\beta} \sqrt{1 + \left(\frac{dy/dt}{dx/dt}\right)^{2}} \frac{dx}{dt} dt$$
Since $dx/dt > 0$, we have
$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

Even if C can't be expressed in the form y = F(x), Formula 4 is still valid

Basically, it's valid on any stretch where C looks like a function. So you would do a bunch of smaller integrals over those stretches, (provided C doesn't *go vertical for more than an instant at a time*). And you don't have to assume that dx/dt > 0, you just formulate L slightly differently on stretches where dx/dt < 0...

$$L = \int_{\alpha}^{\beta} \sqrt{[f'(t)]^2 + [g'(t)]^2} dt$$

THEOREM If a curve C is described by the parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, where f' and g' are continuous on $[\alpha, \beta]$ and C is traversed exactly once as t increases from α to β , then the length of C is

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

WARNING: The arc length of the circle described by the parametric equations $x = \cos(2t)$, $y = \sin(2t)$ traverses the circle twice for $t \in [0,2\pi]$, so our formulation for arc length would give DOUBLE the circumference of the circle!!! So be careful about whether or not dx/dt > 0, in particular.

37-40 Set up an integral that represents the length of the curve.
Then use your calculator to find the length correct to four decimal places.

37.
$$x = t - t^2$$
, $y = \frac{4}{3}t^{3/2}$, $1 \le t \le 2$

69. The curvature at a point P of a curve is defined as

$$\kappa = \left| \frac{d\phi}{ds} \right|$$

where ϕ is the angle of inclination of the tangent line at P, as shown in the figure. Thus the curvature is the absolute value of the rate of change of ϕ with respect to arc length. It can be regarded as a measure of the rate of change of direction of the curve at P and will be studied in greater detail in Chapter 14.

(a) For a parametric curve x = x(t), y = y(t), derive the formula

$$\kappa = \frac{|\dot{x}\ddot{y} - \ddot{x}\dot{y}|}{\left[\dot{x}^2 + \dot{y}^2\right]^{3/2}}$$

where the dots indicate derivatives with respect to t, so $\dot{x} = dx/dt$. [Hint: Use $\phi = \tan^{-1}(dy/dx)$ and Formula 2 to find $d\phi/dt$. Then use the Chain Rule to find $d\phi/ds$.]

(b) By regarding a curve y = f(x) as the parametric curve x = x, y = f(x), with parameter x, show that the formula in part (a) becomes

$$\kappa = \frac{|d^2y/dx^2|}{[1 + (dy/dx)^2]^{3/2}}$$

