

PARAMETRIC EQUATIONS AND POLAR COORDINATES

Section 11.1 #s 2, 3, 5, 6, 12, 13, 14, 17, 19, 20, 25, 26

- 2. use $t = 0, \pi/2, \pi, 3\pi/2, 2\pi$
- 3. use $t = -\pi, -\pi/2, 0, \pi/2, \pi$

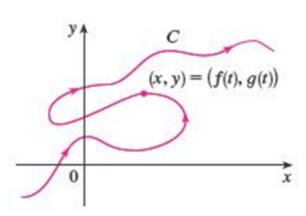


FIGURE I

An example where you can "eliminate the parameter" t:

$$x = t^2 - 2t \qquad y = t + 1$$

Another Example where you can eliminate the parameter: The unit circle!

$$x = \cos t$$
 $y = \sin t$ $0 \le t \le 2\pi$

$$(x,y) = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$(x,y,z) = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}$$

$$x = t^{2} - 2t \quad y = t + 1$$

$$\Rightarrow y - t = t$$

$$x = (y - 1)^{2} - 2(y - 1)$$

$$= y^{2} - 2y + 1 - 2y + 2$$

$$= y^{2} + 4y + 2^{2} - 4 + 3$$

$$= (y - 2)^{2} - 1$$

$$x = (y - 2)^{2} - 1$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x - 2) - 1$$

$$x = \cos t \quad y = \sin t \quad 0 \le t \le 2\pi$$

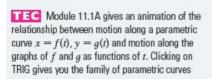
$$x^{2} = \cos^{2}t \quad y^{2} = \sin^{2}t$$

$$x^{2} + y^{2} = \cos^{2}t + \sin^{2}t = 1$$

$$un + circle$$

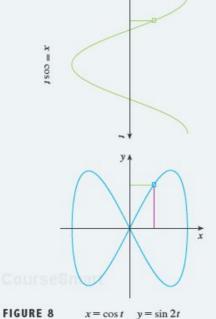
$$x = \cos t \quad y = 3\sin t \quad is \quad an \quad ellipse,$$

http://www.stewartcalculus.com/tec/

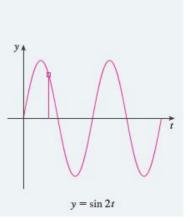


 $x = a \cos bt$ $y = c \sin dt$

If you choose a=b=c=d=1 and click on animate, you will see how the graphs of $x = \cos t$ and $y = \sin t$ relate to the circle in Example 2. If you choose a = b = c = 1, d=2, you will see graphs as in Figure 8. By clicking on animate or moving the t-slider to the right, you can see from the color coding how motion along the graphs of $x = \cos t$ and $y = \sin 2t$ corresponds to motion along the parametric curve, which is called a Lissajous figure.



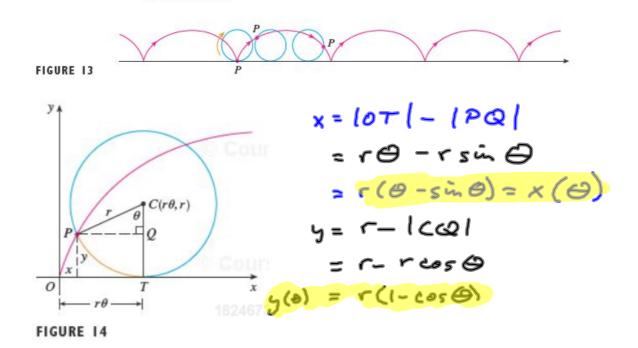
 $x = \cos t$ $y = \sin 2t$

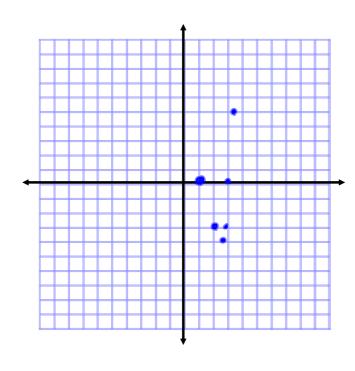


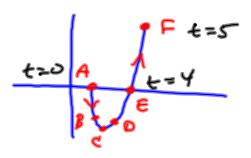
THE CYCLOID

EXAMPLE 7 The curve traced out by a point *P* on the circumference of a circle as the circle rolls along a straight line is called a **cycloid** (see Figure 13). If the circle has radius *r* and rolls along the *x*-axis and if one position of *P* is the origin, find parametric equations for the cycloid.

shows how the cycloid is formed as the circle moves.







$$A = (1,0) \quad t = 0$$

$$B = (2,-8) \quad t = 1$$

$$C = (2,41,-4) \quad t = 2$$

$$D = (2,73,-8) \quad t = 3$$

$$E = (3,0) \quad t = 4$$

$$F = (3,24,5) \quad t = 5$$