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FIGURE 1|
An example where you can "eliminate the parameter" ¢:
a5
=10 y=t+1

Another Example where you can eliminate the parameter: The unit circle!
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http://www.stewartcalculus.com/tec/
3

LE4E Module 11.1A gives an animation of the
relationship betwean motion along a parametric
cune x = f(f), ¥ = g{#) and motion along the
graphs of f and g as functions of «. Clicking on
TRIG gives you the family of parametric curves
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r=acosbt y=csinds

If you choose e = b = ¢ = d = 1 and click
on animate, you will see how the graphs of -
x = cos fand y = sin 1 relate to the circle in
Example 2. If you choosea = b =¢ = |,
d = 2, you will see graphs as in Figure 8. By /'\ "“\.‘ f./ /\
clicking on animate or moving the rslider to / N I'. /
the right, you can see from the color coding how ( L | / | I." \
motion along the graphs of x = cos ¢ and | Fi | I | | \
¥ = sin 2r corresponds to motion along the para- | yi > -, T '|. Iy
mietric curve, which is called a Lissajous figure. | ,f": 5 | \ |I "I |
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FIGURE & x=cosi y=sinf ¥y =sin 2t


http://www.stewartcalculus.com/tec/

091020-11-1.notebook October 20, 2009

THE CYCLOID

EXAMPLE 7 The curve traced out by a point P on the circumference of a circle as the
circle rolls along a straight line is called a cycloid (see Figure 13). If the circle has
radius r and rolls along the x-axis and if one position of P is the origin, find parametric
equations for the cycloid.

An animation in Module 11.1B
shows how the cycloid is formed as the
circle moves.
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